含初始變形平板挫曲強度分析與規範值之比較

李綺芳*1 黃建樺*

*中國驗船中心

關鍵詞:初始變形,平板挫曲,CSR-H,有限元素分析,船級規範

摘要

在板承受壓縮負荷,負荷達到某一臨界值時,板會發生挫曲,此負荷為板的挫曲強度,即為板受壓縮時的極限強度,通常比板受拉張的極限強度低。因此,平板之極限強度設計必須考慮板的挫曲強度。由於挫曲強度之重要,國際船級協會聯合會(International Association of Classification Societies, IACS)的協調共同結構規範(Harmonised Common Structure Rule, CSR-H)以及各船級協會,如挪威驗船協會(Det Norske Veritas, DNV)的規範等,都對板挫曲有詳細的要求。

為了更了解規範對板挫曲強度要求的技術背景,本文對矩形板進行有限元素分析之挫曲強度計算,計算 案例分成四種外力負荷:縱向壓縮負荷、橫向壓縮負荷、剪切負荷及雙軸壓縮負荷。另外,鋼板並非為完美 平坦的結構,在製造過程會有火焰切割、銲接,導致板有初始變形(Initial Deflection),即幾何不完美(Geometrical Imperfection),因而降低板的挫曲強度。因此,本文在分析中包含此幾何不完美的特性,以取得更符合實際的 板挫曲強度。

有限元素分析結果會和 ISSC(International Ship and Offshore Structures Congress) III.1 技術委員會 2012 年 之計算結果比較,以確認分析結果合理,再與 CSR-H 及 DNV 規範值做比較,以了解規範之安全係數及挫曲 強度制定的技術背景。

緒論

各船級協會制定的規範中,針對結構強度的描述性要求不外乎板厚、剖面模數、剪切面積……等 各種寸法要求,而這些都是為了確保結構有足夠的 強度來抵抗可能會遭遇到的外力。然而,在使用這 些公式時,使用者可能無法清楚了解其背後的意 義,及係數決定的方式,故有必要對此做進一步的 研究。

由於船舶裝載及船重的不均匀分佈將造成船體 樑垂向彎矩,在海上航行時又同時承受波浪彎矩, 彎矩使得船體樑呈現舯垂或舯拱狀態,如圖1。而船 體樑在舯垂和舯拱彎矩的作用下,會在船體樑橫剖 面產生縱向應力,圖2即為舯垂時橫剖面上的正應 力分佈,應力為零處為該剖面之中性軸。圖中的板 格因此而承受面內拉張力或壓縮力。受到拉張力的 結構構件之極限強度可達到所使用之材料的拉張極 限強度,如圖3的B點;但受壓縮力的構件,依其 幾何特性,其挫曲強度常會低於拉張極限強度,所 以受壓構件的極限強度為較低的挫曲強度,如圖3 的A點。

圖1 舯垂與舯拱

¹ 聯絡作者 李綺芳(chifang@crclass.org.tw)

圖 3 結構極限強度設計基準[1]

鋼船船體結構為薄殼結構,板佔有極大的比 例,為船體結構基本構材之一,也是規範要求的主 要對象。平板抵抗水壓時(面外負荷),由板的彎曲剛 性對抗,可藉由板厚、跨距(Span)和間距(Space)等參 數加以控制。板的面內剛性及強度相對之下較大, 當承受面內拉張負荷時,其極限強度較易掌握,但 承受面內壓縮或剪切負荷時則可能造成挫曲,導致 極限強度大幅降低。

各船級協會,如挪威驗船協會(Det Norske Veritas, DNV)的規範[2]等,都對板挫曲有詳細的要求;國際船級協會聯合會(International Association of Classification Societies, IACS)於 2012 年 7 月發表適用於油輪和散裝船之協調共同結構規範(Harmonised Common Structure Rule, CSR-H)之第一版草案[3],亦針對現行共同結構規範之挫曲要求做進一步的整合與修正。CSR-H 對船體結構之要求可分為描述性要求(Prescriptive requirements)以及使用有限元素分析(FEA)之直接強度分析(Direct strength analysis)兩大

類; 需檢核之結構又分為板、補強板、加強材和主 支撐構件四類。在公式方式的描述性要求裡,對於 板之挫曲只要求考慮船體樑造成之面內應力(包含正 應力與剪力); 面外側向壓力(如水壓及貨物壓力)必 需在 FEA 裡才予以考量, 而且也僅應用於補強板和 加強材。故 CSR-H 對板的描述性規定裡, 只要求面 內壓縮挫曲和承受側向壓力要分別符合; DNV 規範 則對平板要求在承受面內壓縮力之後, 還要檢視面 外壓力不得大於規定值。

為了更了解 CSR-H 及 DNV 板挫曲強度公式的 技術背景,本文使用有限元素軟體 ABAQUS 進行板 挫曲案例的分析,包含4種外力分佈、6種板厚及是 否含有初始變形等參數。將計算結果與 CSR-H 和 DNV 的挫曲強度公式比較

板挫曲分析

當平板承受較小的壓縮負荷時,平板可穩定平 衡於直接變形模態,即面內變形,變形量與負荷間 之關係為板之剛性;但若壓縮負荷增大到某一臨界 值,僅靠面內變形無法平衡,平板會突然穩定平衡 於別的變形模態下,即以彎撓之形狀來保持穩定平 衡,此為平板挫曲,其相對應的壓縮負荷為平板所 能承受的最大負荷,即平板的挫曲強度。

文中將分為4種受力狀況進行有限元素分析: case1為於矩形板施以縱向壓縮負荷(施力於短邊), 如圖4(a); case2為於矩形板施以橫向壓縮負荷(施 力於長邊),如圖4(b); case3為於矩形板施以剪切 負荷,如圖4(c); case4為於矩形板施以雙軸壓縮負 荷,如圖4(b)。此外,並會個別模擬取得板在含初 始變形及不含初始變形情況下的挫曲強度。

1. 分析對象

本文分析對象參考 ISSC(International Ship and Offshore Structures Congress) III.1 技術委員會 2012

年9月提出之研究報告,其中探討平板極限強度時 採用的模型[4],以方便將計算結果與 ISSC 之結果做 比較,確認合理性。板的幾何與材料係數如圖 5,共 有6個不同厚度的板。假設平板四周由加強材所支 撐,其邊界設為可內縮之簡支。

圖 5 板的幾何與材料係數[4]

2. 初始變形(Initial deflection)

由於鋼板並非完美平坦,在火焰切割、銲接時 會造成初始變形,並降低鋼板的結構強度,因此在 進行有限元素分析時,必須要包含初始變形的影 響,以取得更接近真實情況的板挫曲強度。

板挫曲的初始變形,有兩種模態表示:挫曲模 態及瘦馬模態。挫曲模態為板受到各種負荷及邊界 條件時,挫曲強度最低之特徵值的模態;瘦馬模態 為模擬板在火焰切割、銲接後產生的初始變形。板 在挫曲模態的初始變形下,所得的挫曲強度最低, ISSC 板挫曲分析也得到相同結果[4],故本文以板挫 曲模態作為板初始變形計算板挫曲強度。

如圖 6 所示,初始變形以下式之板挫曲模態表示:

$$w_{oplt} = A_0 \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$
(1)

其中 a 為板之長邊, b 為板之短邊; m、n 分別 為長邊、短邊的半波數; A_0 為波形之振幅,座標軸 如圖 4 所示。經由平板理論式子推導,會造成本文 案例矩形板最低挫曲強度的模態為 case1:m=3, n=1; case2:m=n=1; case3:m=2,n=1; case4:m=1、 2、3(依長短邊軸向負荷的比值而定)。

初始變形振幅通常會根據設計章程及實際板 的統計資料,而事實上,振幅會因板而異。一般來 說,振幅會與板細長比β或β²成正比(β如(3)式所 示)。表1之A₀為各個文獻挫曲評估時使用的振幅。

表1 各個挫曲評估方法使用的振幅

文獻	A_0
ISSC-ANSYS(*PNU) [4]	$0.1\beta^2 t$
ISSC-ALPS/ULSAP(*PNU) [4]	$0.1\beta^2 t$
ISO 18072-2 [5]	$0.1\beta^2 t$
DNV/PULS [4]	b/200
*PNU: Pusan National University	

表中,DNV的振幅A₀=b/200,與厚度及板細長 比無關,只與結構間距相關。此方式較接近檢驗時 採用之方式,如同 IACS REC. 47[6]中檢驗接受標準

規定平板在肋骨間之變形量不可超過 8mm,亦與厚 度、板細長比無關。為與 ISSC 結果比較,本文初始 變形振幅採取下式,其中,t為板厚, σ_{Yp} 為板降伏 應力,E 為板料材楊氏模數:

$$A_0 = 0.1\beta^2 t \tag{2}$$

$$=\frac{b}{t}\sqrt{\frac{\sigma_{Yp}}{E}}$$
(3)

計算結果比較與討論

β

以有限元素分析六種不同厚度之矩形板,將計 算結果與 ISSC 計算值[4]、DNV 及 CSR-H 規範值32 比較。其中, σ_x 為施加於矩形板 x 方向(長邊方向) 的應力, σ_y 為施加於矩形板 y 方向(短邊方向)的應 力, τ 為施加於矩形板的面內剪切應力, τ_{yp} 為板剪

切降伏應力,取 $\tau_{Yp} = \frac{\sigma_{Yp}}{\sqrt{3}}$

1. Case 1: 縱向壓縮負荷

矩形板承受縱向(x 方向)壓縮負荷下,有限元素 分析得到的挫曲強度無因次化結果如圖 7 的 FEM 及 FEM-INITIAL DEFLECTION,含初始變形的板極限 強度皆低於未含初始變形的板極限強度。可知,板 初始變形會顯著降低板極限強度,為重要參數,不 容忽視之。

ISSC 計算結果[4]如圖 7 的 ANSYS(PNU) with buckling mode deflection,結果與本文含板初始變形的 FEM 分析結果類似,顯示本文的分析結果合理。

有限元素分析結果與 CSR-H 規範值比較如圖 8。可知, CSR-H 在未加安全係數時,低於 FEM 未 含初始變形的 FEM 分析結果,且兩者趨勢極為類 似; CSR-H 加上安全係數後(CSR-H 針對平板承受靜 態組合負荷時,給予 0.8 之安全係數,即計算所得之 挫曲強度乘以 0.8),其值皆低於含初始變形的 FEM 分析結果,顯示 CSR-H 的安全係數足夠涵蓋本文設 定之初始變形之影響。

圖 8 Case 1: FEM 與 CSR-H 規範值板挫曲強度比較

矩形板在承受縱向壓縮負荷情況下,有限元素 分析結果與 DNV 規範值的比較如圖 9。可知, DNV 在未加安全係數時,其值皆低於未含初始變形的 FEM 分析結果,且與含初始變形的 FEM 分析結果接 近,因 DNV 規範值已包含了初始變形之考量,但又 不完全相同是因為 DNV 的初始變形振幅與本文所 採用者不同;DNV 加上安全係數後(DNV 安全係數 為 1.15,即計算所得之挫曲強度除以 1.15),其值皆 低於含初始變形的 FEM 分析結果,亦即可完全涵蓋 初始變形之影響。

圖 9 Case 1: FEM 與 DNV 規範值板挫曲強度比較

2. Case 2: 橫向壓縮負荷

有限元素分析結果如圖 10 的 FEM 及 FEM-INITIAL DEFLECTION,其值皆低於 case 1, 因於長邊施加應力時,短邊邊界提供之支撐效應較 低,使得矩形板受橫向壓縮負荷的挫曲強度較低。 如同 case 1 的結果,含初始變形的板極限強度皆低 於未含初始變形的板極限強度。

ISSC 計算結果如圖 10 的 ANSYS(PNU) with buckling mode deflection,其與本文含板初始變形的 FEM 分析結果類似,顯示本文的分析結果合理。

圖 11 顯示有限元素分析結果與 CSR-H 規範值 的比較。可知, CSR-H 在未加安全係數時,其值皆 低於未含初始變形的 FEM 分析結果; CSR-H 加上安 全係數後,其值不完全低於含初始變形的 FEM 分析 結果,但結果很接近。

如圖 12 顯示有限元素分析結果與 DNV 規範值 的比較。可知, DNV 在未加安全係數時,其值皆低 於未含初始變形的 FEM 分析結果,且與含初始變形 的 FEM 分析結果類似,因 DNV 規範值已包含了初 始變形; DNV 加上安全係數後,其值皆低於含初始 變形的 FEM 分析結果,亦即可完全涵蓋初始變形之 影響。

圖 12 Case 2: FEM 與 DNV 規範值板挫曲強度比較

3. Case 3: 剪切負荷

矩形板承受剪切負荷下,有限元素分析結果如 圖 13,在未含初始變形的板極限強度皆達降伏強 度,表示板會達到剪切降伏,而不會產生挫曲。如 同 case1、case2 的結果,含初始變形的板極限強度, 在板厚 16mm、22mm、33mm 之值亦達降伏而未挫 曲,表板的結構穩定度夠,不會產生剪切挫曲;而 板厚 9.5mm、11mm、13mm 之值皆低於未含初始變

FEM 結果與 CSR-H 規範值的比較如圖 14。可 知, CSR-H 未加安全係數時,於板厚 16mm、22mm、 33mm 之值與 FEM 結果相同,皆達降伏而未挫曲, 而板厚 9.5mm、11mm、13mm 之值皆低於未含初始 變形的 FEM 分析結果; CSR-H 加上安全係數後,其 值皆低於含初始變形的 FEM 分析結果。

圖 14 Case 3:FEM 與 CSR-H 規範值板挫曲強度比較

FEM 結果與 DNV 規範值的比較如圖 15。可 知,DNV 在未加安全係數時,在板厚 16mm、22mm、 33mm 之值與 FEM 結果相同,皆達降伏而未挫曲, 而板厚 9.5mm、11mm、13mm 之值皆低於未含初始 變形的 FEM 分析結果;DNV 加上安全係數後,其 值皆低於含初始變形的 FEM 分析結果。

圖 15 Case 3: FEM 與 DNV 規範值板挫曲強度比較

4. Case 4: 雙軸壓縮負荷

矩形板在承受雙軸壓縮負荷情況下,有限元素 分析結果如圖 16 的 FEM 及 FEM-INITIAL DEFLECTION,含初始變形的板極限強度皆低於未 含初始變形的板極限強度。

ISSC 計算結果[4]如圖 16 之 ISSC buckling mode,與本文含初始變形之 FEM 分析結果類似,顯示本文的分析結果合理。

圖 17 顯示矩形板在承受雙軸壓縮負荷情況下, 有限元素分析結果與 CSR-H 規範值的比較。可知, CSR-H 在未加安全係數時,其值皆低於未含初始變 形的 FEM 分析結果; CSR-H 加上安全係數後,板厚 較厚時(t=33mm、22mm、16mm),不完全低於含初 始變形的 FEM 分析結果,板厚較薄時(t=13mm、 11mm、9.5mm),則完全低於含初始變形的 FEM 分析結果。顯示 CSR-H 高估了厚板受雙軸壓縮負荷的挫曲強度。

如圖 18 顯示矩形板在承受橫向壓縮負荷情況 下,有限元素分析結果與 DNV 規範值的比較。可 知,DNV 在未加安全係數時,其值皆低於未含初始 變形的 FEM 分析結果;DNV 加上安全係數後,除 了 t=22mm 的例子外,DNV 挫曲強度皆低於含初始 變形之 FEM 分析結果。

結論

本文以有限元素法分析 6 個不同板厚之含與不 含初始變形的矩形板,取得 4 種外力型態下之挫曲 強度,並與 ISSC 結果比較以確認本文分析法為合 理,再與 CSR-H 和 DNV 規範值做比較,以了解規 範值的技術背景。

CSR-H 規範值與 FEM 的結果比較中, Case 1 在未加安全係數的 CSR-H 規範值與 FEM 未含初始 變形之板極限強度類似, CSR-H 加上安全係數後, 其值低於 FEM 含初始變形之板極限強度。Case 2 在 未加安全係數時, CSR-H 值皆低於 FEM 未含初始變 形的 FEM 分析結果, CSR-H 加上安全係數後, 板厚 較厚時(t=33mm、22mm), CSR-H 值不完全低於含初 始變形的 FEM 分析結果, 板厚較薄時(t=16mm 、 13mm、11mm、9.5mm), CSR-H 值則完全低於含初 始變形的 FEM 分析結果,但兩曲線極為接近。Case 3 在未加安全係數時,CSR-H 值皆低於等於 FEM 未 含初始變形之板極限強度,加上安全係數後,CSR-H 值皆低於 FEM 含初始變形之板極限強度。Case 4 中,CSR-H 未加安全係數時,其值皆低於未含初始 變形的 FEM 分析結果,加上安全係數後,板厚較厚 時(t=33mm、22mm、16mm),CSR-H 值不完全低於 含初始變形的 FEM 分析結果,板厚較薄時 (t=13mm、11mm、9.5mm),CSR-H 值則完全低於含 初始變形的 FEM 分析結果。結果表示 CSR-H 之安 全係數大都可涵蓋初始變形的影響,唯 Case 2、Case 4 會在板厚較厚時,其安全系數無法涵蓋初始變形的 影響。

DNV 規範在 Case 2 結果比較中,未加安全係 數時,其值皆低於未含初始變形的 FEM 分析結果, 且與含初始變形的 FEM 分析結果很接近,因 DNV 規範值已包含了初始變形,但於 Case 1、Case 3、Case 4 中現象並不完全相同,可能是 DNV 之初始變形振 幅與本文採用者不同所致;DNV 加上安全係數後, 除了 Case 4 t=22mm 的結果外,其餘值皆低於含初始 變形的 FEM 分析結果,表示其安全係數幾乎可涵蓋 初始變形的影響。

本研究顯示, CSR-H 之安全係數大都可涵蓋初 始變形的影響,唯 Case2、Case4 在板厚較厚時,其 安全係數無法涵蓋初始變形的影響,其原因可能為 厚板的初始變形設定太小。DNV 在加上安全係數 後,除了 Case4 板厚 22mm 以外,其餘結果皆表示 其安全係數可涵蓋初始變形的影響。

由於鋼板並非假設般完美,火焰切割及銲接 會導致初始變形及殘餘應力,並會影響極限強 度,有必要對這兩個因素個別進行探討。唯本文 主要針對初始變形對板極限強度的影響,未來可 在已含初始變形之板的基礎上,再加上殘餘應 力,進行不同板厚承受各種負荷下的有限元素分 析,探討殘餘應力對極限強度的影響,並與規範 值做比較。

參考文獻

 Jeom Kee Paik and Anil Kumar Thayamballi, "Ultimate Limit State Design of Steel-Plated Structures," (January 2006).

- Det Norske Veritas, "Recommended practice DNV-RP-C201 Buckling Strength of Plated Structures, " (October 2010).
- IACS "Harmonised Common Structure Rule," (1st July 2012).
- ISSC, "Report of Technical Committee III.1: Ultimate Strength," (September 2012).
- ISO 18072-2 "Ships and marine technology Ship structures – Part 2: Requirements for their ultimate limit state assessment," (2010).
- IACS "REC47 Shipbuilding and Repair Quality Standard," (October 2010).

Buckling Analysis of Plates with Initial Deflection and Its Comparison with Rule Requirement

C.F. Lee*¹ C.H. Huang^{*}

*China Corporation Register of Shipping

Keywords: Initial deflection, Buckling of plate, CSR-H, Finite element analysis, Class rules

ABSTRACT

When subjected to compressive stress, the plate buckles before it reaches ultimate strength; therefore, for plate design based on ultimate limit state, designers must consider buckling strength. Due to the importance of plate buckling strength, CSR-H (Harmonised Common Structure Rule) adopted by IACS(International Association of Classification Societies) and DNV rules both include buckling strength of plate in detailed requirements.

In order to understand the technical background of plate buckling strength requirements from rules, four loading cases will be employed on a rectangular plate by using finite element method. Four cases are a rectangular plate subjected to longitudinal compressive stress, transverse compressive stress, shear stress and biaxial compressive stress. Furthermore, steel plates are typically fabricated by flame cutting and welding which cause initial imperfections in the form of initial distortions, and thus structural capacity would be reduced. Therefore, the imperfections should be involved in finite element analysis to attain more accurate and actual buckling strength of plate.

Finally, the results of finite element analysis will be compared with that of ISSC Technical Committee III.1 to confirm the rationality, and then compared with those of CSR-H and DNV to get insight to the technical background about buckling strengths and safety factors.