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Abstract 

This study evaluated the fatigue life of a 5-fin Pre-Swirl Stator 
(PSS) fitted ahead of the propeller of an 80,000 DWT bulk 
carrier. Specifically, this study considered the fatigue loads 
exerted on the fins by the stern wake and the ship motion 
induced velocity fields, neglecting the effect of the propeller 
induced inflow. A Boundary Element Method (BEM) based on 
the potential flow theory was employed to evaluate the loads 
on the fins. As input for this method, the viscous wake flow 
was produced by computational fluid dynamic simulations in 
calm water, and the motion-induced velocity was derived from 
potential flow based seakeeping analyses. Finally, finite ele-
ment analyses were carried out using the BEM pressure dis-
tribution to extract the hot spot stress at the fin connection, 
and to thereby assess the fatigue life of the PSS, which was 
found to be significantly greater than 25 years. 
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Introduction 

Since the adoption of the Energy Efficiency Design 
Index (EEDI) resolution by the IMO (2011), energy 
efficiency has become a general concern in ship design. 
Jong (2011) reviewed various existing solutions devel-
oped over the past for ship powering improvement. A 
popular strategy consists of improving the flow into the 
propeller through the utilization of Energy Saving De-
vices (ESD) such as Pre-Swirl Stators (PSS). A PSS 
consists of several stator fins fitted on the stern boss 
ahead of the propeller. The PSS generates a swirling 
flow opposite to the propeller rotation that equalizes the 
propeller inflow and optimizes the propeller efficiency. 
Although failure of the PSS fins is not critical to the 
ship’s structural integrity, they might impact the propel-
ler after detaching. Therefore, their strength must be 
carefully considered, especially regarding their fatigue 
life since cracks were reported as the cause of actual 
PSS fin failures by Lee and Kim (2015). 

Guidelines regarding the direct evaluations of loads for 
the structural design of PSS are lacking. Yet the PSS 
fins are subjected to various sources of cyclic loads 
resulting from ship motions, viscous wake in waves and 
possibly from Vortex Induced Vibrations (VIV) that 

jointly contribute to the fatigue. Numerical tools such as 
Computational Fluid Dynamic (CFD) have been vali-
dated by researchers and towing tank facilities to eva-
luate the benefits of PSS in terms of powering perfor-
mance. Amongst others, Jong (2011) presented a 
framework to validate and optimize the Energy Saving 
Devices (ESD) efficiency using CFD simulations cali-
brated against model tests. However, CFD analyses are 
very time consuming and more practical methods are 
needed to evaluate the loads for structural design. 
Therefore, researchers have proposed various approach-
es to address this problem. Paboeuf (2013) proposed a 
numerical approach to evaluate the structural strength of 
an ESD for which the design waves producing the max-
imum bending of the fins would be determined through 
potential flow based seakeeping analyses, and the cor-
responding loads exerted on the ESD would be directly 
analyzed through CFD simulations. Lee and Kim (2015) 
adopted a similar hybrid potential-viscous flow hydro-
dynamic computational approach, but a neural network 
was employed to approximate the CFD-produced hy-
drodynamic forces as a function of the ship motions 
thereby enabling rapid long term fatigue predictions. 

This study aimed to evaluate the contribution of ship 
motions to the fatigue life of the PSS fins. Specifically, 
this study adopted a hybrid potential-viscous flow ap-
proach which, compared with CFD, provides a more 
practical engineering solution for this problem. A 
Boundary Element Method (BEM) developed by Hsin 
(1990 & 2003), that is based on the potential flow 
theory, was used to evaluate rapidly the hydrodynamic 
loads on the fins for a given regular design wave. 

This paper consists of six sections. The first section 
presents the methodology adopted in this study to assess 
the PSS fatigue life. The second and third sections de-
scribe, respectively, the potential flow based seakeeping 
analyses and calm water CFD simulations conducted to 
evaluate the velocity flow field at the PSS. The fourth 
section presents the BEM fin load predictions. The fifth 
section compares BEM load predictions to direct CFD 
simulations in waves. Finally, the sixth section eva-
luates the fatigue life of the PSS. 
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Fig. 9: PSS Fx Prediction by BEM for 75%Vs 

 

Fig. 10: PSS Fy Prediction by BEM for 75%Vs 

 

Fig. 11: PSS Fz Prediction by BEM for 75%Vs 

Figure 12 shows the BEM prediction of bending mo-
ment about fin No.1's chord axis for the four EDWs (i.e. 
Headings = 180 deg, 210 deg, 240 deg and 270 deg) and 
two speeds (i.e. 75%Vs and 100%Vs). 

It can be observed that for each speed, the BEM predic-
tions were similar for the four EDWs. Table 5 lists the 
range of bending moments exerted at fin No.1 produced 
by each EDW. It appeared that for the two speeds, the 
quartering sea EDW with a heading of 240 deg resulted 
in a bending moment range approximately 23% larger 
than that obtained for the head sea EDW. Finally, for 
the quartering sea EDW with a heading of 240 deg, the 
100%Vs speed generated a bending moment approx-
imately 40% larger than that obtained for the 75%Vs 

speed. Therefore, it was anticipated that the highest hot 
spot stress range and thus the lowest fatigue life would 
be produced for the quartering sea EDW with a heading 
of 240 deg at 100%Vs speed. 

 

 

Fig. 12: Fin No. 1 Bending Moment Prediction by BEM 

Table 5: Fin No.1 Bending Moment Range (kN.m) by BEM 

Heading 
(deg) 

Ship speed 
75%Vs 100%Vs 

180 12.32 17.53 
210 14.44 19.33 
240 15.26 21.42 
270 15.10 21.28 

Comparison of the BEM and CFD Evaluations 

This study conducted three CFD analyses for compari-
son with the BEM predictions: 

 Calm water for 75%Vs, 
 Calm water for 100%Vs, and 
 EDW head sea for 75%Vs (see Table 3, 180 deg). 

 

The CFD settings were the same as presented previously 
to determine the wake flow field in calm water condi-
tion, except that, because of the asymmetric arrange-
ment of the PSS fins (see Fig. 1), the two sides of the 
ship were represented, resulting in a mesh of 5,620,000 
cells. 

Fin Loads Prediction in Calm Water 

Figures 13 to 15 show each component of the hydrody-
namic force exerted on each fin determined by BEM 
and CFD computations in calm water for the two speeds. 
Some deviations can be observed between the BEM and 
CFD results for each speed assumption. However, the 
trends obtained by BEM and CFD analyses were similar, 
especially, for fin No.1, where the Fx CFD prediction 
was approximately 25% larger than the BEM results, 
and the Fy and Fz evaluations by both approaches were 
very similar. Therefore, for fin No.1, the BEM results 
were in good agreement with the CFD predictions in 
calm water.  



 

 

 

Fig. 13: PSS Fx Prediction by BEM and CFD in Calm Water 

 

Fig. 14: PSS Fy Prediction by BEM and Calm Water CFD 

 

Fig. 15: PSS Fz Prediction by BEM and Calm Water CFD 

Figure 16 shows the velocity field around fin No.1 ob-
tained by CFD analyses at three section planes taken 
along the length of fin No.1. In the r1-plane, it can be 
observed that the fluid separated from the leeward sur-
face probably due to a large attack angle. However, the 
BEM methods based on potential theory cannot consid-
er this effect of separation. Although the separation 
tended to disappear for the planes r2 and r3, the separa-
tion close to the root can explain the load deviations 
between the BEM and CFD analyses. Furthermore, fins 
No. 2, 3 and 4, are in low inflow velocity areas (see 
Fig.7) which might increase the angles of attack and 
generate more flow separation that cannot be properly 
handled by the BEM and could thus explain the larger 
deviations observed between BEM and CFD results. 

  

Fig. 16: Velocity Flow Field at fin No.1 by CFD 

Fin Loads Prediction in Regular Waves 

This study performed CFD simulations including the 
pitch and heave motions of the ship in head sea at 
75%Vs considering a regular equivalent design wave of 
4.96 m height and 12.6 s period (see Table 3, 180 deg). 
Figure 17 presents the wave pattern obtained by CFD. 
Table 6 lists the heave and pitch motions obtained 
through CFD analyses and those produced by the poten-
tial flow (PF) based seakeeping analyses. A slight wave 
dissipation appeared during the CFD simulations with a 
wave height at the bow of 4.85 m. Additionally, in Ta-
ble 6, it can be observed that the CFD heave motion 
amplitude was approximately 13% lower than that ob-
tained by potential flow (PF) based seakeeping analyses, 
whereas the pitch response produced by both analyses 
were similar. The ship motions obtained by CFD were 
thus in good agreement with the potential flow (PF) 
based seakeeping predictions. 

 

Fig. 17: Wave Pattern and Ship Motions by CFD Analyses  

Table 6: Heave and Pitch Motions Amplitude Prediction 
by CFD and PF Seakeeping Analyses 

Analysis Types 
Heave 

(m) 
Pitch 
(deg) 

CFD 2.13 2.36 

PF Seakeeping 2.44 2.40 

 

Figure 18 shows the vertical forces exerted on fin No.1 
obtained by BEM and CFD calculations in waves. It can 
be observed that as the ship was pitching bow up (t = 
158 s and 168 s), the CFD prediction was slightly 
smaller than the BEM results, whereas as the ship was 
pitching bow down (t = 164 s), the deviation was much 
larger. Fluid separation induced by an extensive attack 
angle may explain this load overestimation by the BEM 
which cannot reproduce the viscous flow effect. 



 

 

 

Fig. 18: Fin No.1 Fz Predictions in Wave by BEM and CFD  

Figure 19 shows the bending moment about the chord 
axis of the fin No. 1, obtained by BEM and CFD calcu-
lation in waves. It appeared that the results obtained by 
both approaches had a very similar cyclic trend, but also 
a significant shift of the mean value. However, bending 
moment ranges of 12 kN.m and 10 kN.m can be ob-
served for the BEM and CFD computations respectively, 
leading to a 20% BEM overestimation compared to the 
CFD results. Therefore, the cyclic range of bending 
moment was in good agreement between both ap-
proaches. The BEM approach would thus produce a 
slightly conservative load prediction for fatigue assess-
ment, since the fatigue life would mostly be related to 
the range of bending moment. 

 

Fig. 19: Fin No.1 Bending Moment Prediction in Wave by 
BEM and CFD  

Structural Fatigue Life Evaluation 

This study carried out static Finite Element Analyses to 
evaluate the PSS fin No.1 structure response, especially 
to extract the maximum hot spot stress range at the fin 
connection to the stern boss structure. Figure 20 shows 
the FE model of the PSS including fin No.1 and the 
stern boss structure. The FE model was made of 'Shell' 
elements with a very fine mesh size corresponding to 
the element thickness at the fin connection where the 
hot spot stress was extracted.  

The fore end of the stern boss FE model was set as fixed. 
The pressure distribution over fin No.1 produced by the 
BEM computations was transferred onto the fin FE 
model. Additionally, the cyclic hydrostatic pressure was 
applied onto the fin as it related to the ship motion-
induced waterhead at the PSS that varied approximately 
between 8 m and 12.5 m for all the examined EDWs. 
Finally, gravity was included as a vertical downward 
acceleration of 9.81 m/s2.  

 

Fig. 20: Principal stress contour on the PSS FE model 

 

The largest hot spot stress range was then extracted 
from the highly stressed element in Fig.20, and the 
corresponding two-parameter Weibull long term stress 
range distribution was scaled on this reference stress 
range obtained for a probability level of 10-2, as de-
scribed in the methodology. The fatigue life was then 
assessed using the S-N curve provided by the IACS 
(2015a) for a total number of cycles of approximately 
7.1×107

 over the 25 years of the ship life calculated by 
Eq. 6, provided by the IACS (2015a).  

  L4Tf10557.31N D0
6

D log  (6)

where f0 is the percentage of life time in operation set as 
85%, TD is the design life taken as 25 years and L is the 
ship length. 

Table 7 presents the results of the fatigue life evalua-
tions. It can be observed that for 75%Vs and 100%Vs, 
the lowest fatigue life was obtained for a wave heading 
of 240 deg with the associated predicted fatigue lives 
(TF) of 2575 years and 518 years respectively. Therefore, 
the fatigue strength of the pre-swirl stator examined in 
this study was found satisfactory, although the fin hy-
drodynamic bending moment range produced by BEM 
was slightly more conservative than that of the CFD 
calculations (see Fig. 19). Additionally, the average 
speed assumption had a significant effect on the fatigue 
life prediction, since a speed increase of 33% resulted in 
an 80% reduction in predicted fatigue life. 

Table 7: Fatigue Life Evaluations Detailed Results 

Heading
(deg) 

Ship speed 
75%Vs 100%Vs 

ΔσHS 
(N/mm2)

D 
(-) 

TF 
(year) 

ΔσHS 
(N/mm2) 

D 
(-) 

TF 
(year)

180 22 0.005 4848 30 0.021 1180
210 25 0.009 2637 32 0.031 808
240 25 0.010 2575 36 0.048 518
270 24 0.007 3465 33 0.037 679

Conclusions 

This study evaluated the fatigue life of a pre-swirl stator 
fitted on the stern boss ahead of the propeller. Specifi-
cally, this study evaluated the ship motions contribution 
to the fatigue life of the PSS fins. This study adopted a 
hybrid potential-viscous flow approach which, com-
pared with CFD, provides a more practical engineering 
solution for this problem. A Boundary Element Method 



 

 

(BEM) developed by Hsin (1990 & 2003), that is based 
on the potential flow theory, was used to evaluate rapid-
ly the hydrodynamic loads on the fins for a given regu-
lar design wave. Calm water CFD simulations were 
conducted to evaluate the viscous stern wake's nominal 
velocity field. Potential flow based seakeeping analyses 
were carried out to produce the motion-induced velocity 
at the PSS for various Equivalent Design Waves (EDW). 
The EDWs were defined based on the long term predic-
tions of vertical velocity at the PSS for head, quartering 
and beam sea headings, and for two ship speeds set as 
75% and 100% the service speed. The BEM predicted 
that the horizontal fin No.1 was subjected to the largest 
bending loads. 

The advantage of the BEM was that it did not require 
conducting very time consuming CFD simulations in 
waves. However, this method relied on several assump-
tions that need to be further validated. Therefore, CFD 
simulations in waves were conducted for comparison 
with the BEM results. First, it appeared that the load 
predictions in calm water were in good agreement for 
both approaches, especially for fin No.1. On the other 
hand, the observation of the fin No.1 bending moment 
in waves shows that the BEM predictions were signifi-
cantly shifted down compare to the CFD results, but the 
range value was only 20% higher than that produced by 
CFD which would thus lead to a reasonably conserva-
tive fatigue life estimate. The BEM approach is thus a 
convenient approach allowing for rapid fin load evalua-
tion with reasonable accuracy. However, the compari-
son with CFD enabled the authors to also identify the 
local flow separation on the leeward side of the fin. In 
the future, the consideration of the propeller inflow 
velocity in calm water by CFD would reduce the attack 
angle and thus limit the influence of separation on the 
fin load predictions. A limiting pressure to the potential 
flow prediction for attack angle exceeding the stall an-
gle would also enable reducing the BEM overestima-
tions. Finally, the BEM calculations were conducted 
assuming that the stern wake flow field produced by 
CFD in calm water remained unchanged in waves. This 
enabled the authors to avoid carrying out time expensive 
CFD simulations in waves. However, additional CFD 
simulations in waves omitting the PSS geometry would 
be necessary to observe variations of the nominal wake 
flow field in order to validate this assumption. 

Finally, this study carried out finite element analyses of 
the PSS structure using the BEM pressure distribution 
combined with the cyclic hydrostatic waterhead pres-
sure and gravity. The maximum hot spot stress range 
extracted at the fin No.1 connection to the stern boss 
was produced for the EDW of 240 deg wave heading 
(i.e. quartering sea) and the evaluated fatigue lives were 
of 2575 years and 518 years for 75% and 100% service 
speed respectively. Therefore, the PSS fatigue strength 
was found satisfactory even though the BEM loads were 
found to be conservative compared to the CFD predic-
tion. The average speed assumption had also a signifi-
cant effect on the fatigue life evaluation. 
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