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Abstract: When solving real-world problems with complex simulations, utilizing stochastic algorithms
integrated with a simulation model appears inefficient. In this study, we compare several hybrid
algorithms for optimizing an offshore jacket substructure (JSS). Moreover, we propose a novel hybrid
algorithm called the divisional model genetic algorithm (DMGA) to improve efficiency. By adding
different methods, namely particle swarm optimization (PSO), pattern search (PS) and targeted
mutation (TM) in three subpopulations to become “divisions,” each division has unique functionalities.
With the collaboration of these three divisions, this method is considerably more efficient in solving
multiple benchmark problems compared with other hybrid algorithms. These results reveal the
superiority of DMGA in solving structural optimization problems.

Keywords: hybrid algorithm; genetic algorithm; particle swarm optimization; pattern search; jacket
substructure; structural optimization

1. Introduction

Offshore wind energy has become a pertinent source of renewable energy worldwide. The material
cost of offshore wind substructures (OWSs) accounts for approximately 17% of the total cost of
installation [1]. Therefore, reducing the mass of the structure is a primary objective of optimization
for reducing cost. Safety constraints are also a fundamental concern to make optimizing OWSs a
multi-objective task. Because analyzing offshore wind turbines (OWTs) must consider multiple design
loads, namely nonlinear wind, wave, and gravity loads, optimizing OWSs has been recognized as a
highly nonlinear problem with complex computation [2]. Furthermore, calculating objective function is
based on finite element analysis (FEA) without an analytical form, also seen as “black-box optimization.”

Knowledge of algorithms is of great importance for OWS optimization. Deterministic algorithms
such as the gradient-based method have been widely used in OWS optimization [3,4]; however,
this method may cause solutions trapping in a local optimum. In contrast to the gradient-based
method, stochastic algorithms evaluate all the particles in a search space using a specific search process.
Because of the randomness of the algorithms, the stochastic algorithms can be more likely to find
the optimum of the real-world problem. The most common stochastic algorithm, standard genetic
algorithm (SGA), was introduced to achieve a global optimum [5–8]. SGA includes crossover and
mutation as evolutionary operators, originating from the concept of competition and survival of
biological evolution. Such processes help SGA find a global optimum due to its randomness. Colliding
body optimization [9] has recently been applied to OWS optimization. The colliding bodies are many
particles simulating the behavior of colliding, which is also a searching process.
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However, stochastic algorithms usually require more function evaluations. Numerous studies
have proposed a surrogate model when applying SGA in complex real-world problems, which is too
inefficient to be integrated with simulation analyses [10]. Conversely, the gradient method is efficient
enough to be integrated with simulation analyses in optimization processes, but it fails to obtain a
global optimum. Designing a more efficient stochastic algorithm has become a pertinent topic for
solving real-world problems using simulation models with acceptable computational costs.

Hybridization of algorithms is an effective strategy for improving the performance of original
algorithms. Hybrid algorithms can preserve the desired features of the original algorithms. For highly
nonlinear complex problems, conventional deterministic methods tend to find a local optimum. Some
global modifications, e.g., Hofmeister [11] did overcome this issue, but stochastic algorithms can
mostly ensure the reliability of solutions. Pattern search (PS) is a common local search method that
is hybridized with stochastic algorithms. Because stochastic algorithms are inaccurate and converge
slowly during optimization, some researchers have combined local search with an evolutionary
algorithm to improve its accuracy and convergence. In 2017, Li [12] selected the best particle among
SGA to execute the PS method to obtain a relatively accurate result faster, namely pattern search
genetic algorithm (PSGA). Similarly, particle swarm optimization (PSO) can also be hybridized with
PS. For the optimized fuzzy proportional integral controller of the automatic generation controller,
Sahu [13] combined PS with PSO by executing the two algorithms in turn. While PSO contributes to
global exploration, PS is used for local exploitation.

Many researchers have attempted to combine SGA with other stochastic algorithms. For example,
simulated annealing (SA) was inspired by the annealing process, whereas the probability for particles
jumping to a neighborhood was based on the annealing function. Researchers implemented this
concept into SGA to determine whether a particle can be replaced by a new particle from crossover
operators [14]. This arrangement helped SGA to evolve toward a correct direction, and hence improved
its efficiency. Pourvaziri [15] used SA for local search in an island model genetic algorithm (IMGA) to
help each population search for feasible space.

Hybridizing SGA and PSO is also a feasible approach to finding a global optimum. Krink [16]
proposed a simple hybrid scheme looping SGA, PSO, and hill-climber algorithms in sequence for local
search, namely the lifecycle model genetic algorithm (LMGA). If the number of generations without
improvement exceeds a given threshold, the executing algorithm changes.

In this study, we proposed a novel hybrid algorithm called the divisional model genetic algorithm
(DMGA). We combined PS with SGA and PSO to accelerate the convergence of the optimization
process while maintaining the diversity of the particles. The algorithm contains three divisions,
with each division having a unique functionality, namely a divisional model. Detailed description of
these algorithms is contained in Section 2. Then we conducted performance analyses of the proposed
algorithm comparing with various hybrid algorithms in Section 3. Finally, in Section 4 we solved a jacket
substructure (JSS) optimization problem with several hybrid algorithms. The main goal of the present
study is to demonstrate the superiority of the proposed hybrid algorithms in solving JSS optimization
problem. We chose a four-legged jacket substructure with X-type interleaving braces planted in the
Taiwan Strait as the optimization model. Through updating the radii and thicknesses of structural
members, we targeted a lighter design under safety constraints in ultimate environmental loads.

2. Materials and Methods

2.1. Original Algorithms

The introduction and development of the algorithms referred to in this paper are described as
follows. In this section, we present the original algorithms: SGA, PSO and PS. Any modifications or
improvement of DMGA are based on these algorithms and will be discussed in Section 2.2.
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2.1.1. Standard Genetic Algorithm (SGA)

In 1950, Turing [17] stated that computing intelligence could be achieved through the evolutionary
process of “the survival of the fittest.” In 1975, Holland [18] proposed a random search algorithm,
SGA, inspired by Darwin’s theory of evolution. In SGA, characterized evolutionary operators, namely
selection, crossover, and mutation, are dedicated to generating new chromosomes (data points) to
replace old chromosomes. Because operators can be easily hybridized with other algorithms, many
modified or hybrid algorithms have originated from SGA.

Because of the randomness of SGA, obtaining a global optimum can be guaranteed if the evaluation
time is infinite [19]. Although the probability of finding a global optimum using SGA is higher than in
other algorithms, practically SGA might obtain a local optimum under a limited computational time or
slowly converge in nonlinear or multi-optimum problems, which can be improved by hybridizing
with other algorithms.

2.1.2. Particle Swarm Optimization (PSO)

PSO is an evolutionary algorithm developed by Kennedy in 1995 [20]. This algorithm was inspired
by social interaction of animals. For example, when a flood occurs, birds search for food, with each bird
simultaneously flying in a direction instructed by other birds aligned with self-experience. Shi modified
PSO in 1998 [21] by adding inertial weight to balance the global and local search by exciting the “flying”
of PSO. Shi stated that the inertia weight should be between 0.8 and 1.2 to obtain a global optimum in
a moderate number of iterations. This modified form of PSO is as follows:

vt+1
i = ωvt

i + ϕ1β1
(
pi − xt

i

)
+ ϕ2β2

(
pg − xt

i

)
, (1)

xt+1
i = xt

i + vt+1
i , (2)

where ω is inertia weight; ϕ1 and ϕ2 are two positive constants defined according to the problem; β1

and β2 are two random numbers between 0 and 1; xt
i and vt

i denote the position and velocity of ith

particle in tth generation, respectively. Next, the velocity of ith particle in t + 1th generation vt+1
i is

updated, through solving Equation (1), to refer to pi and pg, which represent the personal best position
and global best position, respectively. Afterwards, particles are updated to a new position xt+1

i by
invoking Equation (2).

2.1.3. Pattern Search (PS)

Developed in 1961 by Hooke [22], PS is a type of local search that does not require the gradient of
a function. PS varies in a single dimension at one time by a step size to improve the solution. The step
size is halved when the result has variations in any direction. Finally, when the step size is small
enough, the optimization is judged to be convergent.

2.2. Divisional Model Genetic Algorithm (DMGA)

In this section, the structure and the procedure of the divisional model are described in detail.
Next, the SGA operators and the three divisions collaborating in DMGA are introduced.

The divisional model divides the whole population into three subpopulations to execute in the
respective divisions. At the beginning of the optimization, all the subpopulations are initialized and
the fitness of every chromosome is calculated. Afterwards, the best chromosomes in each division
gather in the pattern search genetic algorithm division, PS-GA, in preparation for local search, named
“Elite migration.” Conversely, the least favorable particles migrate to the targeted mutation division,
which is called “Abandon” to increase the diversity of the division, as presented in Figure 1.
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Figure 1. Structure of Divisional Model Genetic Algorithm (DMGA) algorithm, in which the 
population is divided into Targeted Mutation (TM), Pattern Search-Genetic Algorithm (PS-GA) and 
Particle Swarm Optimization (PSO) divisions. 

Following the migration process, the chromosomes evolve in different divisions as shown in the 
depicted flowchart of DMGA in Figure 2. After an elite migration process, the optimal chromosome 
in the PS-GA division is selected as the initial point to conduct PS with an adaptive strategy, as 
described in Section 2.2.3. This chromosome is regarded as the best solution in this generation. Then 
the chromosomes in the PSO division are updated by using the best solution as the global best 
position for PSO. The targeted mutation (TM) division then determines the targeted mutation range 
according to the performance of all the chromosomes abandoned inside. The main TM range of each 
dimension is located in the part of the particles with better performance. Finally, SGA with the 
acquired TM range operates in the PS-GA and TM divisions to generate new chromosomes. Two 
chromosomes from the divisions are selected and complete a single-point crossover and mutation 
separately. The optimization process stops until the termination criteria is satisfied. To understand 
the procedure more clearly, the pseudo-code of DMGA is referred to Appendix A. 

 
Figure 2. Flowchart of the divisional model genetic algorithm (DMGA). 

Figure 1. Structure of Divisional Model Genetic Algorithm (DMGA) algorithm, in which the population
is divided into Targeted Mutation (TM), Pattern Search-Genetic Algorithm (PS-GA) and Particle Swarm
Optimization (PSO) divisions.

Following the migration process, the chromosomes evolve in different divisions as shown in the
depicted flowchart of DMGA in Figure 2. After an elite migration process, the optimal chromosome in
the PS-GA division is selected as the initial point to conduct PS with an adaptive strategy, as described
in Section 2.2.3. This chromosome is regarded as the best solution in this generation. Then the
chromosomes in the PSO division are updated by using the best solution as the global best position for
PSO. The targeted mutation (TM) division then determines the targeted mutation range according to
the performance of all the chromosomes abandoned inside. The main TM range of each dimension is
located in the part of the particles with better performance. Finally, SGA with the acquired TM range
operates in the PS-GA and TM divisions to generate new chromosomes. Two chromosomes from the
divisions are selected and complete a single-point crossover and mutation separately. The optimization
process stops until the termination criteria is satisfied. To understand the procedure more clearly,
the pseudo-code of DMGA is referred to Appendix A.
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2.2.1. Initialization

The full population N was divided into three parts for the three divisions. Hence, the population
of one division n is equal to N/3. Next, the initial populations of all the divisions were randomly
generated in a feasible space. We then randomized the initial populations according to the lower
bound and search range of the problem, as per the following formula:

x j
i = lowerbound j + range j

∗ rand[0, 1], (3)

where x j
i represents the ith particle/chromosome in the jth dimension; lowerbound j and range j represent

the lower bound and range defined in the jth dimension.
When we considered the parameters of each algorithm, the initial velocity of PSO is defined as

zero for all the particles. Next, we initialized the parameters for SGA: mutation probability pm, and the
size of the dominant population Ne is equal to n/2. Lastly, we defined the parameters of PS, the step
size and tolerance, according to the scale of the target problem.

2.2.2. SGA Operators

Three types of SGA operators are used in DMGA: selection, crossover, and mutation. The selection
operator is responsible for selecting two particles from a dominant population as parents for the
crossover operator. After a fitness evaluation, the better half of the chromosomes is chosen as the
dominant population. Next, two different chromosomes as parents are selected, referring to the
selection probability ps of each chromosome, which is the ratio of its ranking to the summation of
rankings, as per the following formula:

pi
s = 1−

ns + 1− rankingi∑ns
i=1 rankingi , (4)

where pi
s denotes the selection probability of ith chromosome in the division; rankingi is the fitness

ranking of ith chromosome. The total number of the dominant population ns is half that of the
division population.

Single-point crossover and mutation were adopted in this study. Two selected chromosomes
coded in binary were parents, and we randomly generated a position in the string as the cutting point.
The single-point crossover operator swaps the genes of the parents behind the cutting point, generating
two children chromosomes. The mutation operator is performed on a single gene of a chromosome.
If a randomly generated number from 0 to 1 is under pm, a gene is randomly chosen and replaced by a
random value in the mutation range. The mutation range is contracted as the TM range when the
random number is under pm/2, as revealed in Figure 3.
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2.2.3. PS-GA Division

The PS-GA division modifies the PSGA. After each generation, the optimal chromosome of the
entire population is selected to complete PS as a local search around the present position. Therefore,
after the stochastic algorithm in any division generates a favorable solution, the deterministic algorithm
directly improves the solution in this division. The flowchart of PS is presented in Figure 4.
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To improve the efficiency of PS, we added an adaptive strategy to adjust the step size. As the
generation passes, the initial PS step size and PS tolerance decreased linearly with the number of the
generation to prevent too many evaluations being required in the forepart of optimization. When the
step size becomes relatively small, the optimization becomes more concise, and thus the PS process is
improved. The step size and tolerance of the PS are initialized according to Equations (5) and (6).

step_size = initial_size ∗ (Max_generation− generation)/Max_generation (5)
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tolerance = initial_tolerance ∗ (Max_generation− generation)/Max_generation (6)

Finally, the selection, crossover, and mutation operators are performed in this division. Therefore,
the beneficial chromosomes are delivered to the next generation and are considered to have the most
potential to achieve a better solution than other divisions due to the gathering of superior particles.

2.2.4. PSO Division

PSO is another stochastic algorithm used in DMGA. However, PSO searches for a global solution
in a different manner from SGA. PSO updates every particles by selecting both the global best and
self-experience particles, whereas SGA updates chromosomes by selecting parents to deliver their
beneficial genes to the next generation. This strategy reduces the risk of trapping in a local optimum.
PSO independently updates every particle that belongs to a division in accordance with Equations (1)
and (2).

Regarding the global best position in the population of the PS-GA division, PSO in this division
converges faster than the traditional PSO. As particles approach to the global best position, a better
solution may be discovered in the next generation. Thus, DMGA increases the diversity of searching
directions to offer a higher probability of achieving a global optimum.

2.2.5. TM Division

In contrast to the PS-GA division, the least favorable particles of other divisions are gathered
in the TM division. The TM division targets a narrower mutation range with a higher possibility of
containing a global solution. As shown in Figure 5, all the particles in the division are firstly divided
into two sections according to the median of variables in each dimension. Then the total fitness of the
particles in both sections are calculated—for instance, high fitness means lighter structural mass under
constrained safety criteria in this study—to determine the superior section. The superior section in each
dimension contributes to form the TM range for the mutation operator in the PS-GA and TM divisions.
Finally, particles in the TM division perform the SGA operators to generate a new generation.
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The TM range is arranged according to the superior part of each dimension, as per Equations (7)–(9),
by contracting the section with the lower fitness by one-third and the other section by two-thirds. If
the mean fitness values of the two sections are equal, however, both sections shrink by half.

If the lower part is superior :

 lowerbound j
TM = lowerbound j

∗
2
3 + median j

∗
1
3

range j
TM = 1

3 ∗
(
range j + median j

− lowerbound j
) , (7)
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If the upper part is superior :

 lowerbound j
TM = lowerbound j

∗
1
3 + median j

∗
2
3

range j
TM = 2

3 ∗ (range j
−

median j

2 + lowerbound j

2 )
, (8)

If the both parts are equal :

 lowerbound j
TM = lowerbound j

∗
1
2 + median j

∗
1
2

range j
TM = 1

2 ∗ range j , (9)

where lowerbound j
TM and range j

TM represent the TM lower bound and range in jth dimension, whereas
lowerbound j and range j denote the original ones. According to median value median j of chromosomes
in jth dimension, we obtain the lower bound and range for TM.

3. Benchmark Study

The performance of DMGA is discussed in this section and compared with other algorithms.
All algorithms were coded using MATLAB software. To avoid attributing performance to a randomly
chosen initial population, we conducted 100 runs of each test function and recorded whether we
reached the optimum and the number of function evaluations. Every run started from a different
initial population, with the population size set at 60. In order to prove the potential of DMGA in
diverse applications, we chose diverse test functions with different difficulties. Because some test
functions are more complex than others, to make them comparable, we set the limitation of function
evaluations very high, say 600,000, so that convergence (if exists) can be achieved without being
bounded by the limit. For real optimization applications, the number of evaluations should be set
according to limitation of computation time, for example, the jacket substructure problem in Section 4
was limited to 1500 because of time-consuming finite element analysis of each evaluation. Finally,
the effectiveness and efficiency of the algorithms were calculated by the success rate and the number of
function evaluations, respectively.

3.1. Test Functions and Algorithms Setup

We selected 13 common test functions for the optimization with high diversity for analyzing
the performance of algorithms. The test functions came from the CEC2013 benchmark and other
resources [23–26]. All the test functions and references are listed in Table A2 in Appendix B. The search
range and tolerance for each test function is given according to the property of the function.

We defined the mutation probability pm as 0.5 and pmi as 0.1. Other parameters for PS and PSO
were set according to the property of each test function, as listed in Table A3. The results for all the test
functions calculated by DMGA are presented and compared with SGA, PSO, and their hybrids. In this
study, we inferred four hybrid algorithms (as described in the Section 1), which are based on SGA,
PSO and PS. We listed the name and reference of the algorithms below:

• PSGA by Li et al. [12]
• Hybrid pattern search PSO (PSPSO) by Sahu et al. [13]
• Lifecycle model GA (LMGA) by Krink and Løvbjerg [16]
• Hybrid GA and PSO (HGAPSO) by Juang [27]

It is worth mentioning that we replaced the hill-climber in LMGA by PS in this study to make a
fair comparison with other algorithms.

3.2. Performance Analysis

The overall computational results listed in Table 1 present the efficiency and effectiveness of
selected algorithms when solving different test functions. The results of DMGA obtained 100%
effectiveness in 9 of the 14 test functions, and the number of function evaluations generally stayed
lower than other algorithms when reaching similar effectiveness. However, several test functions were
relatively difficult for DMGA to solve, but it could still obtain over 60% effectiveness.
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Table 1. Computational results of the SGA and PSO and their hybrids.

Algorithm

DMGA SGA PSO PSGA PSPSO HGAPSO LMGAFunction
Effectiveness 1

Efficiency 2

Ackley 100 0 56 68 100 91 99

5380 0 1451 252,278 1891 219,310 13,040

Schwefel
100 100 6 100 2 100 100

1722 175,399 1330 34,476 195 48,414 22,643

Rastrigin 100 0 0 71 100 0 0

3197 0 0 203,757 4389 0 0

De Joung 100 100 100 100 100 100 100

183 3434 395 192 194 686 419

Rosenbrock
99 1 67 2 79 100 98

35,237 320,580 8424 235,324 10,072 64,466 154,925

Goldstein-Price
100 100 100 100 100 100 100

446 3365 482 643 527 1259 524

Easom
100 100 99 100 95 100 100

962 11,912 7244 3284 1608 6288 1909

Zakharov
100 0 13 3 100 95 99

10,370 0 1209 507,315 2251 265,632 57,163

Hartman (H6,4) 80 96 6 98 54 40 56

7502 161,007 136,880 65,964 836 32,072 84,422

Eggholder 64 86 0 72 8 49 97

90,029 164,835 0 164,080 25,302 66,124 106,781

Schaffer
84 93 0 95 27 31 24

118,778 188,019 0 159,428 56,886 74,706 286,874

Styblinski-Tang 100 42 16 99 12 100 100

738 387,744 1084 35,968 242 26,356 13,725

Beale
100 100 89 100 94 100 100

729 3775 537 2484 624 6559 749
1 Times of success in 100 runs of each function. 2 Average number of function evaluations in 100 runs for
each function.

Although SGA and PSO are both stochastic algorithms, they have their own specialties in different
test functions. As a result, their hybrids with PS, PSGA and PSPSO showed the same tendency to solve
some functions whereas the other algorithms did not. It is worth noting that these two algorithms
perform well in the Rastrigin function, which shows the hybridization of PS improving the convergence
toward local minimum. However, PS in LMGA became less effective in the Rastrigin function because
of the limited number of function evaluations when three algorithms took turns to solve the problem.

HGAPSO is the combination of SGA and PSO conducted in each half of the population separately,
showing superiorities from both original algorithms. Nevertheless, it generally cost more function
evaluations than other algorithms composed of PS. From the previous discussion, it can be seen
that DMGA successfully combined the three original algorithms in an effective way, thus improving
effectiveness and efficiency.

In addition, we conducted a ranking analysis based on the effectiveness and efficiency of each
algorithm. First, we compared the effectiveness of the algorithms. If there were algorithms with the
same level of effectiveness, we then compared the efficiencies as a ranking rule. Table 2 lists the ranking
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of every algorithm in solving each function. The average of the rankings of functions was calculated to
compare the overall performance among the algorithms.

Table 2. Rankings of the performance analyses.

Algorithm
DMGA SGA PSO PSGA PSPSO HGAPSO LMGA

Function Rank

Ackley 2 7 6 5 1 4 3
Schwefel 1 5 6 3 7 4 2
Rastrigin 1 4 4 3 2 4 4
De Joung 1 7 4 2 3 6 5

Rosenbrock 2 7 5 6 4 1 3
Goldstein-Price 1 7 2 5 4 6 3

Easom 1 5 6 3 7 4 2
Zakharov 2 7 5 6 1 4 3

Hartman (H6,4) 3 2 7 1 5 6 4
Eggholder 4 2 7 3 6 5 1
Schaffer 3 2 7 1 5 4 6

Styblinski-Tang 1 5 6 4 7 3 2
Beale 1 4 6 3 6 5 2

Avg. Rank 1.77 4.92 5.46 3.46 4.46 4.31 3.08

Although there is rarely an algorithm outperforming other algorithms for all functions since the
performance is always problem dependent, DMGA was ranked first and performed the best in 7 out of
13 test functions. With regard to the Eggholder function and Schaffer’s function, DMGA was ineffective
because of the ill-conditioning. DMGA failed to detect the correct TM range and might trap in the
local minimum during the PS process. Despite this, in other functions, DMGA was superior in both
effectiveness and efficiency. Similar to DMGA, LMGA is also a hybridization of PS, SGA, and PSO,
but each operator in LMGA is executed in sequence. Therefore, LMGA would not change the operator
until the optimization gets stuck in the same solution for several generations resulting in an unused
original algorithm.

DMGA was superior for two main reasons. First, the collaboration of the divisional model
improved the performance. Through the migration between the divisions, the best solution in each
generation proceeded through different operators. Thus, the local optimum became active to keep
the optimization process searching for the global optimum. Figure 6 reveals that in the forepart of
the DMGA optimization, each division reached the best solution one by one for a rapid convergence.
In the initial population, the best solution was located in the TM division. Afterward, PS-GA division
improved the solution during 7th to 9th iterations. After trapping in the local optimum for several
iterations through repeated collaboration of PSO and PS-GA, the global optimum was obtained.

The second reason for the superiority of the DMGA was the mutation strategy. The original
mutation and TM operators were used simultaneously to mutate more effectively. As shown in Figure 7,
Easom’s function is a highly nonlinear function without apparent tendency. The minimum of this
function is −1 when x1 and x2 = π, whereas the value stays zero at other locations. Therefore, we might
search the solution mainly through mutation. DMGA had the best mutation strategy, resulting in the
fastest convergence.

We then checked the TM range shown in Figure 8 and revealed that the solution was contained
in the TM range throughout the optimization process. Hence, this strategy enhanced the efficiency
of the mutation. DMGA not only converged faster than other algorithms but also searched for a
global optimum with an efficient mutation operator. DMGA is competitive at completing multiple
optimization problems.
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4. Jacket Substructure Optimization

4.1. Finite Element Modelling

For a real-world problem, an offshore wind turbine substructure was used to minimize its weight as
the objective function. We built a finite element analysis model of the JSS by using Abaqus commercial
software package, as depicted as Figure 9. The reference design was obtained from the preliminary
drawing in a Taiwan offshore pilot project, provided by a private wind energy developer. The height
and foot print of this JSS are 38 m and 11 m by 11 m square, respectively. The topology of the tubular
members are four stories, of which they are categorized in three zones. The four legs are connected
by X-type braces on each face and in each story. Next, we defined sectional properties, thickness
and radius of the members as design variables, numbered from brace to leg, and the atmospheric
zone to the immersion zone. The design variables included the thickness and radius, numbered from
brace to leg, and the atmospheric zone to the immersion zone. t1 ∼ t8 and r1 ∼ r8 represent the
thickness and radius of the brace and leg in the atmospheric, splash, and immersion zones, respectively.
The topologies of the piles and members of the footprint remained as is. The whole structure was
modelled by beam elements, where the wind load was imposed at the top of the tower and the wave
loads were computed on the nodes of elements. The beam elements in the support structure were
categorized into primary (legs) and secondary (braces) elements. The joints at legs and braces were
modelled by truncating the secondary beams with the profiles of the primary beams, so that the
overlapping problem was eliminated, i.e., the braces did not extrude into legs (shown in detail in
Figure 9). Then a rigid connection represented the joint bridges and the truncated breaks from the leg
member to the braces. After the length of each beam and its corresponding profile were determined,
the mass calculation was performed element by element, multiplying the sectional mass and its length.
The whole model contained 720 nodes in the substructure. The model was conducted as elastic
static analysis, with a concern of computational efficiency for thousands of design evaluations in the
optimization exploration. Although some studies prefer dynamic analysis to capture more realistic
structural responses, those combined with stochastic approaches suffered from low computational
efficiency [28]. It could be a rational simplification of the analysis in the design iteration, and the
proposed DMGA attempts an alternation algorithm, which is also compatible with a dynamic solver
in the future. The masses of the equipment and secondary structures (e.g., Nacelle, blades and
access platform) were added to the finite element model, i.e., 240 tons of RNA, 60 tons of the flange.
The tower was also modelled as tapered tubular members at a height of 90 m and 515 tons of weight,
according to the specification of this wind turbine, and it was connected to the top of the jacket through
rigid elements.
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The loads of wind, wave, and current were applied to the finite element models through line
loads (i.e., force per unit length) on the beam elements and a concentrated force for the blades wind
loads at the nacelle. Despite fatigue usually being the design-driving load case for jacket structures,
this study focuses on the performance of optimization algorithms. Thus, only survival conditions were
considered to reduce the computational time of function evaluation. According to the ultimate limit
state (ULS) specified in the design load case in the local requirement [29] for this reference offshore
wind turbine, the turbine has to comply with class IA specifications as per the IEC61400 [30], and the
substructure has to survive in an ultimate environmental condition of 50-year return period. A load
factor of 1.35 was applied to the environmental loads for ultimate strength assessment [31]. A parked
wind turbine with a blade pitch control fault condition under the extreme gust sustained for 3 s was
considered. Wind speed of class IA was applied on this turbine, 50 m/s. The gust factor was defined as
1.4 according to the rule [30]. Therefore, the gust speed reached 70 m/s in the analysis, with a wind
profile of ground shear exponent 0.13. A 4 MW wind turbine, derived from the NREL 5 MW reference
model [32], was with a rotor diameter of 120 m. The wind load on the rotor and nacelle assembly (RNA)
was generated by utilizing steady blade element momentum method (BEM), which was 2030 kN. The
line load on the tower was then computed via empirical formula, which models the pressure drag
as a drag coefficient times diameter and velocity square at that elevation, resulting in a total 683 kN.
Wind loads on the jacket and flange were regarded as small compared to the wind turbine, and hence
were neglected. Due to lack of information about the structural profiles of blades of this assumed
turbine and damping of RNA, the aero-elasticity and induced dynamic load by gust were neglected.
A constant wind load was applied, 2030 kN horizontally, resulting in a 260 MN·m overturning moment
on the legs of substructure. The acting direction aligned with the diagonal of the footprint, so that
compression stress was taken by one leg.

On the other hand, according to the site investigation of the pretend location in the Taiwan
Strait [33], the local requirements of the wave condition for the Taiwan offshore demonstrating wind
turbines pose a significant wave height at 8 m in a 50-year return period. Therefore, the maximum
wave height in this extreme sea state was expected to be 14.8 m, i.e., 1.85 times the significant wave
height [33]. According to the categories of regular wave theory, a minimum wave period (highest wave
dynamics) of 12.7 s was determined on the breaking limit (Figure 10), which corresponds to 5th-order
Stokes wave regime. Table 3 lists the properties of the extreme wind and wave conditions. According
to the aforementioned local requirements, steady current velocity with a seabed shear profile on the
surface, 1.0 m/s, was superposed on the velocity field of wave. In contrast to the steady wind load,
the transient wave loads are more complex and nonlinear. As the diameters of JSS tubular members
are much smaller than the wave length, the wave loads are can be computed by the semi-empirical
Morison equation [34], as per Equation (10), where ρ is the water density; Cm and Cd are the coefficients
of the inertia force and the drag force respectively, which differ for the abovementioned zones; u and

.
u

are the flow velocity and acceleration respectively; and D is the member diameter.

F = ρCm
π
4

D2 .
u +

1
2
ρCdDu|u| (10)

Table 3. Parameters for wind and wave loads.

Mean Wind
Speed Gust Factor Gust Wind Wave Height Wave Period Wave Length

50 m/s 1.4 70 m/s 14.8 m 12.7 s 197 m
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4.2. Algorithm Setup

The optimization problem of JSS is defined as a constrained nonlinear programming problem,

which can be illustrated as follows. The design variables are the thickness
⇀
t and radius

⇀
r of members

of the substructure, constrained between the lower bound tLj, rLj and upper bound tUj, rUj, as per
Equations (11) and (12); the objective of the optimization is the mass of the substructure, as per
Equation (13), which is subject to four constraints, two geometric constraints g1, g2 (Equations (14)
and (15)), and two safety constraints g3, g4 as per NORSOK N-004 (Equations (16) and (17)).

⇀
t = [t1, t2, t3, . . . , tn] ∈ Rn, tLj ≤ t j ≤ tUj, j = 1, . . . , n (11)

⇀
r = [r1, r2, r3, . . . , rn] ∈ Rn, rLj ≤ r j ≤ rUj, j = 1, . . . , n (12)

min f (
⇀
t ,
⇀
r ) (13)

g1(
⇀
t ,
⇀
r ) = r j/t j ≤ 60, j = 1, . . . , n (14)

g2(
⇀
t ,
⇀
r ) = t j − r j 5 0, j = 1, . . . , n (15)

s.t. g3(
⇀
t ,
⇀
r ) 5 355 (16)

g4(
⇀
t ,
⇀
r ) 5 1 (17)

Regarding the rule, the lower bound of the structural thickness tLj is 6 mm. The ratio of radius
to thickness must be less than 60, and the radius must be larger than the thickness. Accordingly,
we set two geometry constraints g1, g2. Since the dimensions of the structure legs are generally greater
than those of braces, we set the minimum thickness of the legs to be 26 mm for accelerating the
optimization process.

Random initialization over the design domain was used to avoid potential local minimum biased
by the reference design. In the first generation, most chromosomes violated the safety constraints; hence,
we added multiples of mass to the objective function to manifest the violation of safety constraints,
i.e., soft constraints [36]. Soft constraints can be violated during the process, but they introduce high
penalties on the objective function. g3 is the ultimate stress criteria, indicating the yield strength σS355

y
(=355 MPa) for S355 steel. g4 is the local buckling criteria, calculated through equations given by
NORSOK N-004 [37], as described in Appendix C. If the computational result violates the constraints,
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the objective function will increase by the multiple of the structure mass. Because the local buckling
criteria are stricter than the ultimate stress criteria, the multiplier for ultimate stress criteria is higher.
To filter out appropriate designs in the early generations, we divided the violation of the local buckling
criteria into three stages, thus improving the efficiency of the searching process. The overview of the
optimization procedure is depicted in Figure 13.

f (
⇀
t ) = Mass + US + LC, (18)

US =

Mass ∗ 10, g3 ≥ σ
S355
y

0, g3 < σ
S355
y

(19)

LC =


Mass ∗ 5, g4 ≥ 1.5

Mass ∗ 3, 1.5 > g4 ≥ 1.0

0, g4 < 1.0

(20)
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Figure 13. Optimization procedure.

In this section, we applied DMGA and other algorithms to optimize JSS, and compared the
performance of design exploration among them to determine which algorithm is superior in the
jacket optimization problem. We considered the ultimate stress and local buckling criteria of offshore
structures as highly nonlinear constraints. The single objective function, the penalized mass of JSS,
is also a nonlinear function in terms of sectional properties. To solve this complicated problem,
the optimization was based on the evaluations of FEA model. By coding the algorithms in Python,
we could repeatedly conduct analysis for different cases automatically. Finally, the convergence rates
and resulting designs obtained by each algorithm were compared.

We selected the algorithms for comparison according to the results of the performance analyses.
SGA and PSO are original algorithms of the DMGA. By ranking the algorithms, PS-GA and LMGA are
considered better hybrid algorithms. All the algorithms with the same initial population set to 60 are
coded in Python to run an optimization process in Abaqus software. Therefore, we set all the needed
parameters for the JSS optimization, as listed in Table 4.
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Table 4. Parameters for JSS optimization.

PS Step Size PS Tolerance ω for PSO ϕ1 for PSO ϕ2 for PSO

80/6 1 20/1.5 1 1 1 0.5
1 These parameters are for the radius and thickness, respectively.

4.3. Results and Discussion

Under 1500 function evaluations, the optimization processes of all the algorithms are shown in
Figure 14. The results indicate that although the DMGA’s mass descended slower than that of the
PS-GA in early generations, it plunged earlier than other algorithms in approximately 300 function
evaluations. The mass decreased considerably until 400 function evaluations in DMGA, reaching
the lightest mass among all the algorithms (Figure 14). Moreover, DMGA only consumed half of the
function evaluations SGA spent. This indicated that DMGA was the most efficient among these hybrid
algorithms. The two conventional algorithms, SGA and PSO, converged slower than hybrid algorithms
with a higher mass. SGA outperformed PSO with a more favorable result and convergence rate, while
PSGA outperformed LMGA. From the previous discussion in performance analysis, it can be seen
that simply taking the original algorithms in turn cannot improve but slowed down the efficiency by
PSO in this case. In terms of objective function, we found that DMGA reached the lightest mass. Even
though the results of other three algorithms are only slightly heavier than DMGA’s below 10 tons,
DMGA consumed only one-third computational time. By comparing to the conventional SGA and
PSO, DMGA saved 26 and 67 tons relatively. This indicates that with DMGA it is possible to save the
computational cost significantly and acquire a competitive result. All the facts prove that DMGA is
suitable to deal with an OWS optimization problem.
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Table 5 lists the results of the JSS optimization, including the thickness, radius, and total structural
mass obtained by each algorithm.
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Table 5. The results of the JSS optimization.

Algorithm
DMGA SGA PSO PSGA LMGA Reference

Member
Thickness

(mm)

Radius (mm)

Atmospheric brace 7.2 14 7.4 12 14.5 18.9

100 100 165 100 101 203

Atmospheric upper leg 43.4 49 33.9 45 41.7 42.5

463 447 673 463 513 600

Atmospheric lower leg 49 49 48.9 56 40 42.5

390 492 557 363 450 600

Splash brace 6 12 18.6 6 16.6 12.8

106 93 277 100 143 226

Splash leg 27.2 30.9 34.1 28 32.2 34

569 527 521 566 510 600

Immersion brace
10.6 9 10 7 6 18.9

119 115 387 124 173 203

Immersion upper leg 36.7 48 28.1 42 34.9 42.5

565 461 674 507 580 600

Immersion lower leg 33 62 58.5 33 41.8 67.5

837 546 611 837 644 650

Mass (ton) 200 226 267 207 209 300

Converged iterations 400 850 over 1500 1420 1400 -

Maximum stress (MPa) 229 228 228 229 235 203

Member of maximum stress Immersion
lower leg

Atmospheric
upper leg

Immersion
lower leg

Immersion
lower leg

Immersion
lower leg Splash leg

Generally, the braces of the structure had a lower thickness and radius than the legs of the structure.
Hybrid algorithms enlightened the mass more than the original ones due to the local search by PS,
which regulated values concisely to a local optimum. DMGA obtained the lightest mass (200 tons),
12% lighter than that obtained by SGA, the most commonly used algorithm in JSS optimization.
The dimensions of the DMGA’s result suggested that the atmospheric members were thicker than those
of the immersed ones, whereas the others stated the opposite suggestion. Manufacturing the large
difference of diameter in a continuous leg might be impracticable and expensive, and the abnormal
distribution of mass along the vertical direction may also cause problems due to its dynamic behavior.
This is because the design variables are free in the design space and practically, more design constraints,
such as the cost model and the natural frequency [36], should be included. Nevertheless, this indicates
that DMGA obtained a different local optimum from the other algorithms, with this result potentially
being the global optimum in the present tests. DMGA obtained a better result not merely dependent
on the local search, but the wide search to find the global optimum. As more load cases are considered,
the local search is expected to be restrained, contracting to the outstanding DMGA.

Figure 15 shows the stress contours of the optimized OWSs. Stress concentrated along the
structural leg, mostly in the atmospheric zone and immersion zone with maximum value below
250 MPa, reacting to the direction of external forces. It is worth noting that DMGA strengthened the
lower leg in the atmospheric zone and splash zone. The radius of structural members distributed
unevenly, which was unusual among all the structures. Moreover, the upper braces were thicker than
the lower ones. These evidences support that DMGA’s result was closer to the global optimum than
others. Apart from this, all nominal stresses in the contours were below the allowable stress. We can
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deduce that the LC constraint governed this case rather than the US constraints. The same conclusion
can be inferred that the maximum stress in the reference jacket was lower than other optimized ones.
That means the buckling constraint had not been reached in the reference design, so there was an
allowance to reduce weight from it.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 20 of 25 
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5. Conclusions

This study introduced a novel hybrid algorithm called DMGA that combines GA, PSO, and PS in
a divisional model. Each division in DMGA represents one algorithm as the searching scheme and
shares information with the other divisions through migration. In performance analyses, the proposed
algorithm was tested with 13 test functions to determine the rate of problem-solving as the effectiveness
and the computational cost as efficiency. The results demonstrated that DMGA outperformed the other
four hybrid algorithms. Moreover, DMGA was the most effective algorithm in seven test functions,
obtaining high efficiency.

Because the purpose of this study was comparing hybrid algorithms for a JSS optimization
problem, we applied these hybrid algorithms to reducing the mass of the JSS along with structural
safety constraints. With a complex and nonlinear loading condition, the simulation analysis of the JSS
requires considerable computational cost. Thus, the efficiency and ability to find a global minimum are
critical. Finally, DMGA obtained the lightest structural mass, which was 12% (26 tons) lighter than that
of SGA, and DMGA required only half number of evaluations to reach a superior result compared
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with the other algorithms. These results indicate that DMGA is an effective and efficient algorithm,
which can be applied to optimize the JSS for offshore wind turbines.
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Appendix A

Table A1. Pseudo-code of the DMGA algorithm.

Procedure of DMGA

1. Setting parameters
2. Initialize random chromosomes/particles in three departments: PS-GA, PSO and TM
3. repeat
4. Evaluate the fitness of all chromosomes/particles

5. Replace two worst
⇀

xi∈PS−GA with the best of
⇀

xi∈PSO and
⇀

xi∈TM respectively

6. Replace two worst
⇀

xi∈TM with the worst of
⇀

xi∈PS−GA and
⇀

xi∈PSO respectively

7. pg = Pattern search (the best of
⇀

xi∈PS−GA )

8. Replace the worst of
⇀

xi∈PSO with pg

9. Update
⇀

xi∈PSO according to Equations (2) and (3)
10. for each dimension j do

11. LOW:={x j
i∈TM | x

j
i∈TM<median(x j)}

12. HIGH:={x j
i∈TM| x

j
i∈TM>median(x j)}

13. lowj:=(Σfitness(x j
i∈TM∈LOW))/n(LOW)

14. highj:=(Σfitness(x j
i∈TM∈HIGH))/n(HIGH)

15. if (lowj > highj) then
16. update targeted_rangej by Equation (7)
17. else-if (lowj < highj) then
18. update targeted_rangej by Equation (8)
19. else
20. update targeted_rangej by Equation (9)
21. end-if
22. end-for

23.
⇀

xi∈PS−GA :=SGA(PS-GA)

24.
⇀

xi∈TM :=SGA(TM)
25. until termination conditions are met
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Appendix B

Table A2. List of test functions.

Function Name Equation Search
Range

Tolerance
% Ref.

Ackley

D = 5
F1(x) = −20 exp

(
−0.2

√
1
D

∑D
i=1 x2

i

)
− exp

(
1
D

∑D
i=1 cos(2πxi)

)
+ e + 20 [−32,32]D 10−2 [24]

Schwefel
D = 5 F2(x) = 418.9829D +

∑D
i=1 −xi sin

√
|xi| [−500,500]D 10−2 [24]

Rastrigin
D = 10 F3(x) =

∑D
i=1

[
x2

i − 10 cos(2πxi) + 10
]

[−10,10]D 10−2 [24]

De Joung
D = 3 F4(x) =

∑D
i=1 x2

i [−5,5]D 10−2 [22]

Rosenbrock
D = 4 F5(x) =

∑D
i=1

[
100 ∗

(
x2

i − xi+1
)2
+ (xi − 1)2

]
[−5,10]D 10−3 [22]

Goldstein-Price
D = 2

F6(x) =[
1 + (x1 + x2 + 1)2

∗

(
19− 14x1 + 13x1

2
− 14x2 + 6x1x2 + 3x2

2
)]
∗[

30 + (2x1 − 3x2)
2
∗

(
18− 32x1 + 12x1

2
− 48x2 − 36x1x2 + 27x2

2
)] [−2,2]D 10−2 [22]

Easom
D = 2 F7(x) = − cos(x1) cos(x2) exp

{
−

[
(x1 −π)

2 + (x2 −π)
2
]}

[−100,100]D 10−2 [22]

Zakharov
D = 5 F8(x) =

∑D
i=1 x2

i +
(∑D

i=1 0.5ixi
)2
+

(∑D
i=1 0.5ixi

)4
[−5,10]D 10−3 [22]

Hartmann (H6,4)
D = 6

F9(x) = −
∑4

i=1 ci exp
(∑6

j=1 ai j
(
x j − pi j

)2
)
,

ai j =


10.0 3.00 17.0 3.50 1.70 8.00
0.05 10.0 17.0 0.10 8.00 14.0
3.00 3.50 1.70 10.0 17.0 8.00
17.0 8.00 0.05 10.0 0.10 14.0


i j

;

ci =


1.0
1.2
3.0
3.2


i

pi j =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


i j

[0,1]D 10−2 [22]

Eggholder
D = 2

F10(x) =
D∑

i=1

{
−(xi+1 + 47) sin

(√∣∣∣xi+1 +
xi
2 + 47

∣∣∣)}
− sin

{√∣∣∣xi +
xi+1

2 + 47
∣∣∣}(−xi)

[−512,512]D 10−1 [23]

Schaffer
D = 2 F11(x) = 0.5 +

sin2
(√

x2
1+x2

2

)
−0.5

[1+0.001(x2
1+x2

2)]
2

[−100,100]D 10−3 [23]

Styblinski-Tang
D = 5 F12(x) = 1/2 ∗

∑D
i=1

(
x4

i − 16x2
i + 5xi

)
[−5,5]D 10−3 [23]

Beale
D = 2

F13(x) =
(1.5− x1 + x1x2)

2 + (2.25− x1 + x1x2
2)

2
+ (2.625− x1 + x1x2

3)
2 [−4.5,4.5]D 10−3 [25]

Parameters for PS were defined as the power of 10 according to the search range to complete local
searches with high efficiency. Next, by the number of local minima of each function, we set inertial
weightω as a multiple of 0.4 to control the activity of PSO. Similar to inertial weight, ϕ1 and ϕ2 are
positive constants for the global experience term and self-experience term, respectively, which control
the convergence of the algorithm. In this study, we set the values of these constants as a multiple of 0.5.
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Table A3. Parameter settings for the algorithms in the performance analyses.

Test Function PS Step Size PS Tolerance ω for PSO ϕ1 for PSO ϕ2 for PSO

Ackley 1 0.01 0.4 1 1
Schwefel 10 0.1 0.4 1 1
Rastrigin 1 0.001 0.8 1 1
De Joung 0.1 0.001 0.4 0.5 0.5

Rosenbrock 0.1 0.001 0.8 1 1
Goldstein-Price 0.1 0.001 0.4 0.5 0.5

Easom 10 0.01 0.4 1 1
Zakharov 1 0.01 0.4 1 1

Hartman(H6,4) 0.1 0.001 0.8 2 2
Eggholder 10 0.1 0.8 2 2

Schaffer 10 0.001 0.8 2 2
Styblinski-Tang 1 0.001 0.4 1 1

Beale 0.1 0.001 0.4 1 1

Appendix C

One of the safety constraints g4 is calculated by the local buckling criteria of axial compression
and bending in NORSOK N004 [35], shown as following equations, whichever is greater:

NSd

Ncl,Rd
+

√
M2

y,Sd + M2
z,Sd

MRd
≤ 1.0, (A1)

or

NSd

Nc,Rd
+

1
MRd


CmyMy,Sd

1− NSd
NEy


2

+

CmzMz,Sd

1− NSd
NEz


2  ≤ 1.0, (A2)

where NSd denotes design axial compression force, and My,Sd, Mz,Sd represent in-plane and out-of-plane
design bending moment. The above variables are obtained from the FEA results. NEy and NEz are
Euler buckling strengths corresponding to the member y and z axes, respectively; Nc,Rd, Ncl,Rd denote
design axial compressive resistance and axial local buckling resistance, respectively; MRd is design
bending moment resistance; Cmy and Cmz represent reduction factors corresponding to the member y
and z axes, respectively. These variables are calculated by further defined equations in the standard.
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