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Abstract: Currently, in the design standards for environmental sampling to assess long-term fatigue
damage, the grid-based sampling method is used to scan a rectangular grid of meteorological inputs.
However, the required simulation cost increases exponentially with the number of environmental
parameters, and considerable time and effort are required to characterise the statistical uncertainty of
offshore wind turbine (OWT) systems. In this study, a K-type jacket substructure of an OWT was
modelled numerically. Time rather than frequency-domain analyses were conducted because of the
high nonlinearity of the OWT system. The Monte Carlo (MC) sampling method is well known for its
theoretical convergence, which is independent of dimensionality. Conventional grid-based and MC
sampling methods were applied for sampling simulation conditions from the probability distributions
of four environmental variables. Approximately 10,000 simulations were conducted to compare
the computational efficiencies of the two sampling methods, and the statistical uncertainty of the
distribution of fatigue damage was assessed. The uncertainty due to the stochastic processes of the
wave and wind loads presented considerable influence on the hot-spot stress of welded tubular joints
of the jacket-type substructure. This implies that more simulations for each representative short-term
environmental condition are required to derive the characteristic fatigue damage. The characteristic
fatigue damage results revealed that the MC sampling method yielded the same error level for Grids
1 and 2 (2443 iterations required for both) after 1437 and 516 iterations for K- and KK-joint cases,
respectively. This result indicated that the MC method has the potential for a high convergence rate.

Keywords: jacket substructure; fatigue damage; statistical uncertainty; Monte Carlo method; time
domain; offshore wind turbine

1. Introduction

Pollution due to energy production is harmful for our living environment; therefore, an alternative
energy source is increasingly required. Offshore wind turbine (OWT) technology offers an opportunity
in this field [1]. According to the Global Wind Energy Council (GWEC), the global wind turbine
installation capacity was 539.1 GW by the end of 2017 and is estimated to reach 840.9 GW in 2022 [2].
Jacket-type substructures are commonly used for the OWT systems for water depths of 20 to 50 m.
The tubular joint connections in jacket substructures are subject to approximately 109 load cycles during
their designed lifetime of 20 years [3] and thus are the critical locations that may undergo fatigue
failure. Time-domain rather than frequency-domain analyses for OWTs are typically used to handle

Energies 2018, 11, 3112; doi:10.3390/en11113112 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-7048-7350
https://orcid.org/0000-0002-2390-5166
http://www.mdpi.com/1996-1073/11/11/3112?type=check_update&version=1
http://dx.doi.org/10.3390/en11113112
http://www.mdpi.com/journal/energies


Energies 2018, 11, 3112 2 of 17

the nonlinearities and interaction problems of wave and wind loads. The primary problem with the
time-domain fatigue analyses is that the process is time-consuming because it employs the conventional
grid-based approach. Thousands of combinations of environmental parameters, such as wind speed
Uw, wave height Hs, wave period Tp, and load direction θ [4], should be considered for long-term
fatigue. The uncertainty of fatigue damage distribution in time analysis should be considered because
of the stochastic processes of the wind and wave simulations [5]. Moreover, the partial safety factor
approach [6,7] is often used in wind turbine fatigue design, and the uncertainty can be minimised by
performing more simulations [8]. Dong [9] reduced the relative statistical uncertainties by conducting
20 simulations each for 400 short-term environmental conditions; that is, 8000 simulations in total.
Both environmental parameters and uncertainties can cause ‘high dimensionality’; thus, the number of
required simulations would render the problem intractable.

Monte Carlo (MC) sampling method is widely used to address high-dimensionality problems
in finance [10] and is applied in OWT analysis under probabilistic frameworks. Bilionis [11] studied
the cross-sectional fatigue at the foundation of a monopile design by conducting a MC simulation
of the wind (velocity) and wave (height and period) characteristics. Vahdatirad [12] quantified the
uncertainties due to the stochastic dynamic stiffness of the foundation of large OWTs; the uncertainties
were related to the first natural frequency of a turbine that was supported by surface footing. Soil elastic
modulus and layer depth were considered as random variables with lognormal distributions; thus,
the MC process was used to conduct a probabilistic simulation. Dong [13] evaluated the uncertainty
due to local strain and fatigue crack initiation life of welded joints and used an approach based on
MC simulation to evaluate the uncertainty due to the randomness of the geometrical and material
parameters. Jensen [14] combined the MC sampling approach and the first-order reliability method
to obtain a favourable estimation of the tail in the distribution of the wave-induced fatigue damage.
Compared with the MC sampling approach, the combination method proposed by Jensen provided
better estimation results. Subsequently, Horn [15] verified this method by including wind loads.
Graf [16] compared the computational efficiencies of the grid-based and MC sampling methods by
calculating millions of short-term damage equivalent loads of floating OWTs with the help of the
supercomputer of the National Renewable Energy Laboratory. The MC method presents significantly
reduced computational cost at high dimensions because the theoretical convergence rate is independent
of dimensions. In general, the MC approach is more efficient when dimensions increase, compared
with the grid-based method.

As an alternative to the time-domain methods, frequency-domain approaches can be highly
efficient for fatigue analysis. Although inevitably limited to linear systems [17], the frequency-domain
method is still useful for the initial design assessments [18]. For comprehensive assessments,
design calculations for OWTs are typically carried out in the time domain, suggested by the
standards of International Electrotechnical Commission IEC 61400-3 [19] and the guidelines developed
by Det Norske Veritas (Norway) and Germanischer Lloyd (Germany) Classification Societies
DNVGL-ST-0126 [20]. Because the environmental parameters and uncertainties can cause ‘high
dimensionality’ for lifetime assessments of the OWTs, we aim to apply the MC approach to the
time-domain analysis for reducing the computational cost. The purpose of this study was also to
compare the number of simulations required to obtain the same level of fatigue damage at the welded
tubular joints of the jacket-type substructure by employing the conventional grid-based and MC
sampling methods. The uncertainty of the fatigue analysis was also discussed. This study conducted
time-domain simulations to not only accurately reproduce the long-term evolution of the wind and
wave loads, but also evaluate the corresponding structural response. Time-domain analyses were
conducted for calculating the hot-spot stress and the stress range by using the rainflow-counting
algorithm [21]. The fatigue limit is commonly characterized as a stress–cycle (S-N) curve, which plots
the magnitude of an alternating stress versus the number of cycles to failure for a given material and
joint type. The S–N curve and Palmgren–Miner’s rule were applied to assess the fatigue life. The entire
procedure is depicted in Figure 1, and every module is sequentially described in the following sections.
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The sea load and wind load were generated via in-house code HydroCRest and the unsteady blade
element momentum method (UBEM) respectively. The calculations were conducted on the basis of the
guidelines of DNV GL [20,22], in compliance with IEC 61400-1 [23].
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Figure 1. Flowchart of the methodology; UBEM and S–N curve denote the unsteady blade element
momentum method and the stress-cycle curve, respectively.

2. Long-Term Environmental Statistics and Sampling

The long-term environmental statistics were based on a preliminary site survey that was conducted
from December 1991 to August 1999 at the THL3 weather station near the Fuhai Offshore Wind Farm
in Taiwan (Figure 2). The scatter diagrams and joint probability tables were collated to produce a
covariance matrix of the five considered environmental load parameters, namely wave height, period,
wave direction, wind speed, and wind direction. In this study, we assumed constant wind and wave
direction. The mean wind speed Uw was in the range of 0 to 30 m/s with an increment of 5 m/s, the
wind direction θ was in the range of 0◦ to 360◦ with an increment of 30◦, the significant wave height Hs

was in the range of 0.25 to 4.75 m with an increment of 0.5 m, and the spectral peak period Tp was in the
range of 3.5 to 14.5 s with an increment of 1 s. By using the four parameters, 8640 combinations were
formed. Note that some conditions do not exist (i.e., zero probability) based on the joint probability
table of the wave scatter Hs and Tp for a given Uw and the joint probability table of the wind scatter Uw

and θ. Therefore, 2443 weather conditions can be derived from the joint probability density distribution
of the characteristic parameters Uw, θ, Hs, and Tp as presented in Equation (1):

fUw ,Hs ,Tp ,θw(u, h, t, θ) = fHs ,Tp |Uw ,(h, t|u)· fθw |Uw ,(θ|u)· fUw ,(u) (1)
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This equation was used to generate stochastic weather states for 20 years. The states served
as the basis for obtaining statistically accurate wind and wave load calculations to conduct fatigue
lifetime evaluations.

2.1. Grid-Based Method

A ‘grid-based method’ or ‘lumping of load cases’ is widely used in the offshore industry.
This method is the most straightforward approach for estimating fatigue damage by selecting
increments for each environmental variable and assessing all combinations of the inputs. This approach
enables rapid calculation of all load cases accumulated from the long-term environmental statistics
because only one simulation is required for each grid. However, for high-dimensional variables, the
grid-based method becomes intractable when the number of required simulations grows exponentially
with the dimension [16]. In this study, four variables were considered—wind speed, wind direction,
wave height, and wave period. Thus, the study was a ‘four-dimensional fatigue analysis’.

2.2. MC Method

The MC method is extensively used in high-dimensionality cases to calculate the expected value
α of a certain problem. The convergence rate of the MC method is based on the central limit theorem
and the law of large numbers as follows:

αn
D→ α +

σ√
n

N(0, 1) (2)

The sample mean αn has approximately the same distribution as the expected value α added to
the standard Gaussian distribution N(0, 1) multiplied by the ratio of the standard deviation σ and
the square root of the number of samples n. The approximation implies that the convergence rate of
the MC method is of the order of 1√

n and is independent of the dimension. Therefore, the method
provides a high-speed estimation even at high dimensions. The error ien between the sample mean
and the true expected value can be written as follows:

εn = αn − α
D→ σ√

n
N(0, 1) =

σ√
n

e−
x2
2

√
2π

(3)

Equation (3) specifies that the error decreases when n increases. The probability of the error based
on the selected intervals is given as follows:

P
(

c1
σ√
n
≤ ien ≤ c2

σ√
n

)
=
∫ c2

c1

e−
x2
2

√
2π

dx (4)

Equation (4) provides an approximate confidence interval by replacing σ with σn, thus implying
that a reasonable estimate can be obtained even for small computations. In Equation (4), c1 and c2 are
usually selected as ±1.96 to derive the 95% confidence interval.

3. Substructure Model Description and Load Generation

This study was focused on a fixed K-type jacket substructure of an OWT designed for the Fuhai
Offshore Wind Farm for a water depth of 23 m (Figure 3). The wind turbine has a power of 3.6 MW
in the preliminary design stage, the diameter of the rotor is 120 m, the cut-in wind speed is 3 m/s,
the cut-out wind speed is 25 m/s, the nominal wind speed is 12 m/s, the tower height is 68.39 m, and
the jacket height is 39.22 m. The entire model included the tower with the simplified mass of the rotor
nacelle assembly applied on the top of the tower and the jacket substructure that was rooted on four
piles for which the interaction with the soil was reproduced using nonlinear elastic spring connectors.
The aerodynamic forces acting on the wind turbine were calculated, and then, the equivalent load was
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applied to the top of the wind tower as a concentrated force in the structural finite element model.
Only x and y components were considered, and the z component was neglected because the tilt angle
is only 5◦. The bending moment at the root of a rotor blade was assumed to be in balance because of
the three blades.Energies 2018, 11, x 5 of 17 
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jacket substructure with the K joint (left) and KK joint (right), and four piles; (b) Top view of the
substructure; (c) Front view of the substructure.

3.1. Sea Loads

For each sea state, the selected Joint North Sea Wave Project (JONSWAP) sea spectrum [24]
and directional spreading function were applied to obtain an irregular, time-varying flow field.
The consequent wave loads for the flow field were determined using the Morison equation,
as expressed in Equation (5) [20], and executed via the in-house HydroCRest code (sea-state
generator/hydrodynamic solver).

FM = ρ · CM · A ·
.
ν +

1
2

ρ · CD · D · ν · |ν|+ FS (5)

where CD and CM are the drag and inertia coefficients, respectively; A is the area of the cylinder; D is
the diameter of the cylinder; ρ is the density of seawater; ν is the horizontal wave-induced velocity
of seawater; and

.
ν is the horizontal wave-induced acceleration of seawater. The coefficients were

determined by following the guidelines of DNV GL [20], in which the slamming term Fs is neglected
in normal wave conditions.

On the basis of the superposition solution of the potential flow theory, an irregular sea surface
was decomposed into an infinite number of regular component waves, which were formulated in
terms of amplitude, direction, frequency, and phase. In the directional JONSWAP power spectrum
presented in Equation (6) [25], SJ(ω) is the wave spectrum defined by two parameters: the significant
wave height (Hs) and the peak period (Tp), D(ω, θ) is the directional spreading function, ω is the wave
frequency, and θ is the direction of the wave. The wave amplitude is calculated using Equation (7) [25].
The phase of each component wave was set randomly. For each load case the simulation was conducted
for 10 minutes with time steps of 0.25 seconds, comprising totally 2400 steps. A single instruction,
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multiple data (SIMD) parallel computing algorithm was implemented in HydroCRest upon graphics
processing unit (GPU) hardware architecture to accelerate the processing of thousands of component
waves and element nodes for wave load simulations. Figure 4a presents the nodal forces and the total
force as computed in HydroCRest. Figure 4b illustrates the directional distribution of the total force
and moment. In Figure 4b, the directions of the total force and overturning moment (OTM) at each
step were counted, whereas the major wave direction was set to the north direction. The probability
distributions over the entire 10 minutes were plot, such that the times of the forces and OTMs in
a certain direction were divided by the total number of time steps. Because the theoretical wave
dynamics consist of oscillatory motions, the major directions of the total force fall in both the north
and south directions, and the total OTM is in the east and west directions. In the simulations the major
wave directions were assumed to be in line with the wind directions.

E(ω, θ) = SJ(ω)D(ω, θ) (6)

a(ωn, θn) =

√
2
∫

∆ωn

∫
∆θn

E(ω, θ)dθdω ≈
√

2SJ(ωn)D(ωn, θn)∆θ∆ω (7)
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3.2. Wind Loads

The short-term wind states were modelled on the basis of the normal turbulence model (NTM)
in IEC 61400-1 [23] with a reference turbulence intensity Iref of 0.16. This modelling was conducted
because the Taiwanese Ministry of Economic Affairs required a pilot wind turbine to be installed
in the Fuhai Offshore Wind Farm with IEC 61400-1 Class IA compliance. By following the NTM,
the standard deviation σU for a given mean wind speed at a hub height of 10 m (U10) can be calculated
as follows [23]:

σU = Ire f (0.75 U10 + 3.8) (8)

To generate a realistic short-term wind state, the wind speed fluctuations were calibrated against
practical onsite data by applying a nonlinear least squares regression analysis to the power spectral
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densities (PSD) of the wind speed data over consecutive 10-min periods. Then, the signals were
reconstructed (Figure 5a). The regression curve amplitudes were scaled to produce a final signal that
conforms to the NTM in IEC 61400-1. The wind fluctuations were further considered (Figure 5b) by
randomising the phase shifts of the component harmonics.
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Because a large number of transient wind load calculations are necessary over the simulated
life time, an unsteady blade element momentum method (UBEM) [26] was adopted to calculate
the aerodynamic loads on the wind turbine. The UBEM discretises the rotor into a number of
two-dimensional (2D) airfoil sections such that the axial and tangential loads on each 2D section
may be calculated from the respective airfoil’s lift and drag characteristics for the respective local
relative flow velocity and angle. These local loads were integrated along the length of the rotor blades
and are multiplied by the number of blades, as presented in Equations (9) and (10), to determine the
total thrust and rotor torque:

FN = nB
1
2

ρU2
rel

∫ R

0
(Cl cos ϕ + Cd sin ϕ)cdr (9)

T = nB
1
2

ρU2
rel

∫ R

0
(Cl sin ϕ− Cd cos ϕ)crdr (10)

where nB is the number of blades; ρ is the density of air; Urel is the rotor velocity; Cl and Cd are the lift
and drag coefficients, respectively; and r is the length of the rotor blades. These equations can be easily
found in studies pertaining to the blade element momentum theory.

The effects of the wind turbine tower on the upstream flow field were modeled by assuming that
the flow field resembled a potential flow around a circular cylinder (Figure 6a), such that the radial
and angular components of the flow velocity at a considered point are given as follows [27]:

Ur = U∞

(
1− R2

r2

)
cos θ (11)

Uθ = −U∞

(
1 +

R2

r2

)
sin θ (12)
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where U∞ is the undisturbed wind velocity and R is the radius of the tower.
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A wind shear profile was also included such that the wind velocity at height z for a specified hub
height H can be expressed as follows:

U(z) = U(H)
( z

H

)α
(13)

where the power law exponent α for offshore locations is 0.14, in accordance with DNVGL-ST-0126 [20].
The UBEM model was validated against the power curve provided by the manufacturer of the

3.6-MW wind turbine [28] for the full range of normal operating conditions by considering the cut-in,
cut-out, and supra-nominal (pitch control) wind velocities. The model was found to appropriately
correlate with the official data (Figure 6b).

4. Fatigue Lifetime Assessment

Beam elements were selected for the finite element model (Figure 3) analysed in Abaqus 2017.
There are several approaches for fatigue analysis, such as the nominal stress approach, the hot-spot
stress approach, the notch stress approach, and the crack propagation approach. The weld joints
are the critical locations based on the experience of the offshore industry. We therefore implement
the hot-spot stress method, recommended by the DNV GL standard [22], for evaluating the fatigue
damage at the tubular joints. The stress raising effect can be considered by the hot-spot stress range by
using the stress concentration factor (SCF) to modify the nominal stress:

σhot spot = SCF× σnom (14)

4.1. Hot-Spot Stress Evaluation

In DNV GL, ‘the hot-spot stress should be evaluated at eight spots around the circumference of the
intersection’, and the hot-spot stress range is derived by the superposition of the SCF as follows [22]:

σ1 = SCFACσx + SCFMIPσmy (15)

σ2 =
1
2
(SCFAC + SCFAS)σx +

1
2

√
2(SCFMIP)σmy −

1
2

√
2(SCFMOP)σmz (16)

σ3 = SCFASσx − SCFMOPσmz (17)

σ4 =
1
2
(SCFAC + SCFAS)σx −

1
2

√
2(SCFMIP)σmy −

1
2

√
2(SCFMOP)σmz (18)
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σ5 = SCFACσx − SCFMIP σmy (19)

σ6 =
1
2
(SCFAC + SCFAS)σx −

1
2

√
2(SCFMIP)σmy +

1
2

√
2(SCFMOP)σmz (20)

σ7 = SCFASσx + SCFMOPσmz (21)

σ8 =
1
2
(SCFAC + SCFAS)σx +

1
2

√
2(SCFMIP)σmy +

1
2

√
2(SCFMOP)σmz (22)

In Equations (15)–(22), SCFAC and SCFAS are the stress concentration factors at the crown for the
axial load and at the saddle, respectively; SCFMIP and SCFMOP are the stress concentration factors for
in-plane and out-of-plane moments, respectively; σx is the maximum nominal stress due to the axial
load; and σmy and σmz are the maximum nominal stresses due to in-plane and out-of-plane bending
moments, respectively.

The SCFs were calculated using a comprehensive set of simple joint parametric equations
proposed by Efthymiou [29]. The parametric equations depend on the joint configurations (T/Y, X, K,
and KT), the applied load cases (axial load and in-plane and out-of-plane moments), the estimated
location of the joint (chord side or brace side, and saddle or crown), and the geometry of the joint.
To avoid long numerical and experimental procedures, the specified method was used in this study.
Moreover, one hot spot at the brace side of the K joint and one hot spot at the brace side of the KK joint
(Figure 3) were investigated.

4.2. S–N Curve and Welding Effect

The basic design of the stress–cycle (S–N) curve is presented in Equation (23) [22], where N is
the number of cycles to failure in the stress range; ∆σ is the stress range derived at eight spots from
Equations (15)–(22); and a and m are constants that depend on the material and the environmental
conditions, respectively.

log N = log a − m log ∆σ (23)

where m = 3.0 and a = 12.18 if N ≤ 1.8× 106, and m = 5.0 and a = 16.13 if N > 1.8× 106.
Three types of S–N curves for the tubular joints (known as T-curves) in different environments

were presented in [22] for air, seawater with cathodic protection, and seawater in which free corrosion
is enabled. Both selected joints in this study were in the splash zone of the substructure; thus, the
T-curve for tubular joints in seawater with cathodic protection was selected. All the tubular joints
were assumed to be full-penetration welded joints at the design stage; thus, the welding effect was
also considered.

4.3. Fatigue Damage Calculation

Fatigue damage calculation was based on the widely used Palmgren–Miner linear damage
theory [30], such that the cumulative damage can be assumed to be the sum of the particular damage
caused by each cycle and is expressed as follows:

Dg = Σ
ni
Ni

= Σ
(ni

a
× ∆σi

m
)

(24)

In Equation (24), Dg is the accumulated fatigue damage, ni is the number of cycles for the stress
range i, and Ni is the number of cycles to failure for the stress range i, which can be evaluated using
Equation (23). To deal with the long-term stress, the rainflow-counting algorithm was used for the
fatigue damage evaluation. The stress range, mean stress and cycles of the irregularity, and the
complex long-term stress signal were determined using the algorithm. By using an open-source
rainflow-counting algorithm MATLAB code [21,31], the expected lifetime T of the tubular joints can be
calculated using Equation (25), where T0 is the time interval of the stress history.
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T =
T0

Dg
(25)

5. Results and Discussion

The accumulated fatigue damage of the tubular joints of the jacket substructure of an OWT was
mainly due to the wind loads. The contributions of the wave loads, however, were still considerable [3].
Moreover, the wind and wave load simulations were stochastic and irregular processes because
they are natural phenomena. Both phase angles of the wave and the wind turbulence models were
randomly generated and caused variation in the hot-spot stress distribution. The random nature has a
considerable influence on the fatigue damage, thus leading to underestimating or overestimating the
fatigue lifetime. In the first part of this section, the uncertainty of fatigue damage is discussed for the
cases of only wind load and only wave load. In the second part, 5000 simulations were conducted, with
each including 10-min hydrodynamic, aerodynamic, and structural analysis based on the MC method,
and 4886 simulations were conducted by using the grid-based method (approximately 68.6 simulation
days in total). The computational effort of the hydrodynamic and aerodynamic simulations can be
summed up to 1.2 days with the parallelisation technology. The structural simulations in Abaqus were
completed in 63.9 days by using one octa-core Intel Core i7-4790 CPU operated at 3.60 GHz.

5.1. Uncertainty of Fatigue Damage

The influence of the stochastic process was discussed by splitting the load conditions into
four wind conditions and three wave conditions. For the wind conditions, 60 short-term (10 min)
simulations were conducted. A hot spot of the KK joint presented in Figure 3 was selected for
demonstration. The fatigue damage values for the case in which only the wind load is considered are
presented in Figure 7a, whereas the mean wind speed was set to 7.5 m/s and the wind direction was 0◦.
Fatigue damage varied with the load case for the 60 simulations under identical load conditions; the
maximum damage was 5.007× 10−12 and the minimum was 1.020× 10−12. The difference between the
minimum and maximum values is considerable because of the stochastic process of wind simulations,
thus causing simulation deviation for each representative short-term environmental condition if the
cycle numbers of simulations were limited. The variation in the characteristic fatigue damage (CFD)
for different simulation samples can be calculated using Equation (26), as presented in Figure 7a.
Approximately seven simulations must be conducted to minimise the CFD error for reducing the
uncertainty effect. A highly representative result can be achieved for each load condition by increasing
the samples.

CFD =
∑ Di

i
, i = 1–60 (26)

Three other wind conditions were also evaluated with a wind direction of 0◦ and mean wind
speed set to 12.5, 17.5, and 22.5 m/s. The fatigue damage distributions were obtained using the
60 simulations for each load condition (Figure 7b). The fatigue damage ranges due to the hot-spot
stress were from 1.812× 10−9 to 7.754× 10−9 for the wind speed of 12.5 m/s, from 4.376× 10−9 to
1.566× 10−8 for the wind speed of 17.5 m/s, and from 1.418× 10−8 to 3.663× 10−8 for the wind speed
of 22.5 m/s. Because the fatigue lifetime of the welded tubular joints of the jacket substructure was
shown to be dominated by wind loads [3], the variation in fatigue damage was mainly influenced by
wind loads.

The maximum, minimum, average, coefficient of variation (CV), and range between the extreme
values of the aforementioned four wind conditions are listed in Table 1. In the worst case, the fatigue
damage was overestimated by a value in the range of 154.0 to 224.6% under the four wind conditions
if only one simulation was conducted because of the extreme value in the 60 simulations. For the
fatigue lifetime in Equation (25), the lifetime of a hot spot was underestimated by a value in the range
of 44.5 to 64.9%. The fatigue damage was underestimated by a value in the range of 42.1 to 59.6%,
thus resulting in a simulation deviation. Moreover, the lifetime was overestimated by a value in the



Energies 2018, 11, 3112 11 of 17

range 167.7 to 237.5% compared with the average lifetime. The deviation of the extreme values was
significant; thus, the uncertainty due to the random effect of the load simulation was considerable.
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Table 1. Extreme and average values, relative standard deviation (CV), and the deviation of the fatigue
damage for the wind-load-alone cases.

Wind Speed 7.5 m/s 12.5 m/s 17.5 m/s 22.5 m/s

Maximum (MAX) 5.007× 10−12 7.754× 10−9 1.566× 10−8 3.663× 10−8

Minimum (MIN) 1.020× 10−12 1.812× 10−9 4.376× 10−9 1.418× 10−8

Average (AVG) 2.419× 10−12 3.451× 10−9 9.305× 10−9 2.378× 10−8

MAX/AVG 206.9% 224.6% 168.2% 154.0%
MIN/AVG 42.1% 52.5% 47.0% 59.6%

STD 1.017× 10−12 9.952× 10−10 2.319× 10−9 5.203× 10−9

CV 0.420 0.288 0.249 0.218

The CV, also known as the relative standard deviation, is defined as the ratio of the standard
deviation (STD) to the average (AVG) of data, as presented in Equation (27), and is widely used to
measure the dispersion of data. The CV of fatigue damage was evaluated using the 60 simulations
for the case in which only the wind load was considered and was up to 0.420 for the wind speed of
7.5 m/s.

CV =
STD
AVG

(27)

The simulation deviation or error (%) for the wind-load-alone cases can be calculated using
Equation (28). The CFDs of the 60 samples (i.e., the average fatigue damage of 600-min or 10-h
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simulations) were adopted as the data and termed as the ‘long-term average’. The simulation deviation
of the wind is presented in Figure 8.

Error (%) =
CFD(i)−CFD(60)

CFD(60)
× 100%, i = 1–60 (28)

We observed that the error curve converges when the number of simulations increases,
thus implying that more simulations should be conducted to obtain a smaller simulation error for each
load condition. The error curves based on the 60 short-term simulations lead to the prediction that
the simulation errors for CFD can be reduced to less than 5% after 19, 13, 31, and 3 simulations for
wind speeds of 7.5, 12.5, 17.5, and 22.5 m/s, respectively. Although the CV of the 17.5 m/s wind load
condition was smaller than those of the 7.5 m/s and 12.5 m/s wind load conditions, the former case
still requires the highest amount of cases to converge within a 5% error.
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Next, the variation in the fatigue damage for the wave-load-alone cases was examined. The hot-spot
stress distribution for welded tubular joints of the jacket substructures indicated that the wave load
is a crucial factor for fatigue lifetime estimation in the OWT industry. To assess the uncertainty of
wave-induced fatigue damage in welded tubular joints, 60 short-term (10 min) simulations for three
wave environmental conditions were performed. The wave heights were set to 0.75, 1.25, and 1.75 m,
and the wave direction and period were set to 0◦ and 6.5 s, respectively, for all three load conditions.

The fatigue damage, presented in Table 2, was overestimated by a value in the range of 225.2
to 325.0% or underestimated by a value in the range of 32.3 to 38.9% because of the maximum and
minimum damage in the 60 simulations. The deviations in the extreme values for the wave-load-alone
cases are as high as those in the wind-load-alone cases.

Table 2. Extreme and average values, CV, and deviation of the fatigue damage for the wave-load-alone
cases.

Wave Height 0.75 m 1.25 m 1.75 m

Maximum (MAX) 5.320× 10−22 6.658× 10−21 5.988× 10−20

Minimum (MIN) 8.977× 10−23 9.567× 10−22 6.484× 10−21

Average (AVG) 2.302× 10−22 2.956× 10−21 1.842× 10−20

MAX/AVG 231.0% 225.2% 325.0%
MIN/AVG 38.9% 32.3% 35.1%

STD 9.378× 10−23 1.239× 10−21 8.973× 10−21

CV 0.407 0.419 0.487
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For a Gaussian sea surface, the following simplification of ocean surface wave elevation is used
extensively in offshore engineering [9]:

ζ̃(t) =
n

∑
j=1

√
2S+

x
(
ωj
)
∆ωj cos

(
ωjt− εj

)
(29)

where S+
x is the directional wave spectrum. The phase angle εj of waves was assumed to be uniformly

distributed over (0, 2π) and was randomly generated in the time-domain simulation because of the
stochastic and irregular manner of the wave simulation based on the natural phenomena. This random
generation affected the distribution of the hot-spot stress range and yielded uncertainties in the
wave-induced fatigue damage. The simulation error of the wave condition was obtained using
Equation (28) and is illustrated in Figure 9. The error curves, such as those of the wind-load-alone
cases, converged as the number of simulations increased. Inevitably, when considering the combined
wind–wave conditions, the uncertainty of the fatigue damage caused by the stochastic process of
the simulations increased further. Therefore, more simulations are required to reduce the simulation
deviation. Thus, the number of required evaluations increases and the problem becomes intractable.
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5.2. High-Dimensional Fatigue Analysis

Four variables were included in the four-dimensional fatigue analysis—wind speed, wind direction,
wave height, and wave period. The stochastic processes of both wind and wave simulations could
influence the CFD value, and the random effects of phase sets were also implicitly included in
the ‘dimension’. For the grid-based method, 2443 combinations (10-min short-term simulations)
were conducted to evaluate the cumulative fatigue damage by summing the product of the fatigue
damage derived from each environmental condition and the occurrence probability. Two sets of
simulations for each condition were calculated (4886 simulations for the grid-based method), and the
CFD results for each set were termed Grid 1 and Grid 2. The average of the two results, termed as
the grid average, was considered as a representative for the grid-based method. We observed that
the Grid 1 and Grid 2 results differed even under identical environmental conditions. Next, the MC
approach was implemented by randomly sampling the environmental variables on the basis of the
probability distribution of each variable and by calculating the 10-min short-term fatigue damage
for each combination that was sampled. The CFD values of n samples were thus obtained. In total,
5000 samples were selected for the preliminary work.

Figure 10 presents the CFD results of the grid-based and MC methods with 95% confidence
intervals for the hot spots around the circumference of the connections of the selected K and KK joints.
The x-axis and y-axis represent the number of samples and the CFD result, respectively. The CFD
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values of the MC method are presented as solid lines. In Figure 5, the blue solid line is the actual
CFD result derived using the 5000 samples, and the green and black lines are the upper and lower
confidence bounds, respectively. The CFD results of the grid-based method are indicated by symbols
(Grid 1 and Grid 2). The average of the grid-based method was termed the ‘grid average’. Although
more simulations are required to derive the long-term CFD of the grid-based method, the grid-based
method was used twice and the grid average was selected as the data for comparison because of the
high computational cost (2443 simulations are required for the wind, wave, and structural analysis for
one grid-based result).Energies 2018, 11, x 14 of 17 
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Figure 10. CFD results of the grid-based and Monte Carlo (MC) methods with 95% confidence interval
for a hot spot of the (a) K and (b) KK joints.

CFD values of the K joint (Figure 10a) derived from Grid 1 and Grid 2 were 4.108× 10−8 and
4.395× 10−8, respectively, and the grid average was 4.251× 10−8. For the MC result, the value for
the 5000 load cases was 4.240× 10−8. The fatigue lifetimes were 463, 432, 447, and 448 years for the
Grid 1, Grid 2, the grid average, and the MC results, respectively. The variation between Grid 1 and
Grid 2 indicated the uncertainty regarding the fatigue damage in the four-dimensional fatigue analysis.
Both the random effects of wind and wave simulations influenced the results of the case in which both
wind and wave loads were considered.

One hot spot of the KK joint was also evaluated for validation (Figure 10b). The CFD ratio of
Grid 2 to Grid 1 was 106.5%, thus revealing the random effect of the simulations. The CFD of the MC
method (blue solid line) roughly converged after 500 samples and was near to the grid average.

The errors of Grid 1, Grid 2, and the MC values of both K and KK joints were estimated (Figure 11)
by selecting the grid average for comparison. In Figure 11, the red solid line presents the grid average
and is marked as the data line (0% error). For the K-joint case, the error estimations of Grid 1 and
Grid 2 were approximately ±3.38%. The grid-based method required 2443 simulations, whereas
the CFD of the MC method converged after 1437 simulations, thus leading to an improvement in
the computational efficiency. Moreover, the CFD of the MC method was within only 5% error after
simulating 617 samples when compared with the grid average. A similar conclusion was drawn for
the KK-joint case.
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Figure 11. CFD error estimation of the grid-based and MC methods for (a) the K joint and (b) the KK
joint when an average of two grid-based results (grid average) was selected as the data.

6. Concluding Remarks

In this study, two sampling methods were presented for the fatigue estimation of the jacket
substructure of an OWT—a conventional grid-based method and the MC method—to derive the
fatigue damage of a K-type jacket substructure designed for use in the Fuhai Offshore Wind Farm in
Taiwan. The long-term environmental statistics were based on a preliminary site survey conducted near
the weather station to reproduce the environmental conditions. The uncertainty of the fatigue damage
caused by the stochastic process of aerodynamic and hydrodynamic simulations were discussed, and
the hot spots of both K and KK joints were selected for studying the uncertainties and the computational
efficiencies of the cases in which only the wind and wave loads were considered. For the cases in
which only wind loads were considered, the simulation error of the fatigue damage was in the range of
154.0 to 224.6% (maximum) or 42.1 to 59.6% (minimum) when compared with the long-term average.
For the cases in which only wave loads were considered, the error was in the range of 225.2 to 325.0%
(maximum) or 32.3 to 38.9% (minimum). The error was considerable when the number of simulations
were limited, thus indicating that more simulations are required for obtaining the representative CFD.
The simulation results of the grid-based method also indicated uncertainties for the combination of
wind and wave loads. The ratio of Grid 2 to Grid 1 was 106.9% for the K joint and 106.5% for the KK
joint. Moreover, the MC method was implemented by randomly sampling the environmental variables
based on the probability distribution of each variable. The number of simulations can be potentially
reduced using the MC method. The CFD results revealed that the MC approach achieved the same
error level for both Grid 1 and Grid 2 (2443 iterations) after 1437 and 516 iterations for the K- and
KK-joint cases, respectively. This indicates that the MC method has a high convergence rate.
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