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Featured Application: A multiobjective approach for optimal sensor placement in structure health
monitoring regarding mode shapes, redundancy, and signal strength was proposed. This method
can be exploited for various types of structures such as buildings, bridges, and offshore jacket
foundations in a preference of weightings on each objective.

Abstract: The objective of optimal sensor placement in a dynamic system is to obtain a sensor layout
that provides as much information as possible for structural health monitoring (SHM). Whereas most
studies use only one modal assurance criterion for SHM, this work considers two additional metrics,
signal redundancy and noise ratio, combining into three optimization objectives: Linear independence
of mode shapes, dynamic information redundancy, and vibration response signal strength. A modified
multiobjective evolutionary algorithm was combined with particle swarm optimization to explore
the optimal solution sets. In the final determination, a multiobjective decision-making (MODM)
strategy based on distance measurement was used to optimize the aforementioned objectives.
We applied it to a reduced finite-element beam model of a reference building and compared it with
other selection methods. The results indicated that MODM suitably balanced the objective functions
and outperformed the compared methods. We further constructed a three-story frame structure for
experimentally validating the effectiveness of the proposed algorithm. The results indicated that
complete structural modal information can be effectively obtained by applying the MODM approach
to identify sensor locations.

Keywords: structural health monitoring; sensor placement; multiobjective optimization; evolutionary
algorithm; modal test

1. Introduction

Structures, including bridges, buildings, offshore foundations, pipelines, and vehicles, are complex
engineering systems that are valuable assets to society and enrich the lives of people. These structures
are subject to deterioration over time due to continuous use and exposure to factors such as deicing
salts, humidity, and temperature variations. Hence, structural health monitoring (SHM) methods have
been developed for evaluating the condition of a structure to avoid any failure and to plan maintenance
actions without interrupting operations. One of the first types of SHM was vibration-based damage
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detection. Vibration-based damage detection techniques are commonly used in different structures.
These techniques are based on the concept that any change in the mechanical properties of a structure
is reflected by changes in its dynamic characteristics. The parameters monitored in vibration-based
SHM include natural frequencies, mode shapes, mode shape derivatives, and damping properties.
The key requirements for the success of the aforementioned techniques are the abilities to identify
different natural frequencies, identify different mode shapes, and overcome spatial aliasing.

Real structures are continuous; therefore, each real structure has an infinite number of nodes.
However, in the physical world, only a finite number of sensors can be placed at a finite number of
locations. In general, the more sensors one places on a structure, the more details are obtained to
reveal the structural health status. However, in practical SHM, the number of sensors is typically
limited and is subject to factors such as budget constraints and structural inaccessibility. Therefore, one
must optimize the sensor locations to obtain as much structural information as possible. This problem
is defined as the optimal sensor placement (OSP) problem. Many studies have been conducted on
OSP problems by using various vibration testing techniques and criteria. Kammer [1] published
a landmark paper in this area. Their study focused on OSP with modal identification and correlation
for large structures. Heo et al. [2] used a kinetic-energy-based method to select a candidate set
based on the modal kinetic energy (MKE) distribution that measured the dynamic contribution of
the physical degree of freedom (DOF) of each finite-element method (FEM) to each target mode shape.
Papadimitriou [3] applied information entropy to measure the energy content of a sensor configuration
for OSP. Another commonly used OSP method is the modal assurance criterion (MAC) method [4,5].
The MAC is defined to measure the correlation between different mode shapes from sensor placements.
It can also be used for quantifying spatial aliasing. The ideal diagonal value of the MAC matrix should
be 1, and the ideal off-diagonal value of this matrix should be 0. Numerous formalisms use one or
more MAC matrices in OSP problems. Sun and Büyüköztürk [6] compared the performance of two
optimization objective functions, namely minimize the largest off-diagonal element and minimize
the sum of the off-diagonal element least squares, for some examples. Although many approaches can
be used for OSP, mode shape matrix methods are often used for analysis and computation.

The OSP problem has been solved through stochastic approaches. Ostachowicz et al. [7] described
the details of evolutionary algorithms used for the OSP problem. These algorithms can be broadly
categorized as population- or trajectory-based algorithms. They can also be classified as bioinspired,
physics-inspired, and geography-based algorithms. However, the aforementioned single-objective
OSP approaches only adopt only one OSP evaluation criterion. Because various quality measures of
a signal might oppose each other, multiobjective evolutionary algorithms (MOEAs) aim at producing
a set of Pareto-optimal solutions in a single run. Because MOEAs have broad applications, considerable
research attention has been devoted to practical MOEAs. Numerous algorithms have been developed
and improved. Most current MOEAs can be classified into three categories. The first category is
dominance-based methods, which include various popular algorithms such as NSGA-II [8], GrEA [9],
PICEA [10], and RVEA [11]. The second category is indicator-based methods [12]. The hypervolume
is the most popular indicator used in these algorithms. The third category is decomposition-based
methods. These algorithms decompose a multiobjective optimization problem (MOP) into a set of
single-objective subproblems or a set of simple multiobjective subproblems and use a population
search method to solve these subproblems in a collaborative manner. The most representative
decomposition-based algorithm is MOEA/D [13], of which many variants have been developed.
Various MOEA applications have emerged for engineering but seldom have research efforts been
devoted to OSP. Feng and Jia [14] considered three influence factors (i.e., the anti-noise ability, linear
independence degree, and redundancy rate) to optimize sensor configuration with a cross-sea bridge
structure. Guo et al. [15] proposed an information-entropy-based multiobjective OSP to detect damage
to bridges subject to ship collisions. Lin et al. [16] introduced two objective functions, namely response
covariance sensitivity and response independence, by using NSGA-II. Particle swarm optimization
(PSO) [17], which was originally proposed for single-objective continuous optimization problems, is
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a population-based optimization method. Coello et al. [18] and Nebro et al. [19] have applied PSO-based
dominance methods to solve MOPs. Decomposition-based methods have also been proposed by many
researchers [20–22].

In this paper, we applied a multiobjective approach using decomposition-based multiobjective
particle swarm optimization (DMOPSO) to solve the complex, nonlinear, and discrete optimization
problem of OSP. This paper is organized as follows: Section 2 presents the research methods and
the three objective functions to be optimized. The DMOPSO algorithm and decision-making strategy
are given in detail. Section 3 presents the validation of the proposed algorithm and comparison of
the OSP solution on Canton Tower with others in the references. Section 4 shows the experimental
validation of the proposed OSP method on a laboratory aluminum frame structure. Finally, concluding
remarks are presented in Section 5.

2. Materials and Methods

2.1. Optimization Procedure

The basic idea of OSP in SHM is to identify a layout for a certain number of sensors that can
be used to obtain as much information as possible regarding a dynamic system. To realize this
objective, the first step is to express a full-scale analytical model in finite-element software, such as
Abaqus. Through modal analysis, modal properties such as mode shapes and natural frequencies
can be calculated. Then, the input parameters for an OSP process are computed and the objective
functions are defined. Next, the optimization algorithm is executed, and it returns a Pareto set. Finally,
a multiobjective decision-making (MODM) strategy is applied to determine the most feasible solution
as the final output OSP. Figure 1 illustrates the process adopted in this study.

When we set the objective function, we considered key factors such as the spatial intersection
angle of the modal vector, the redundancy of the collected data, and the intensity of the collected
signal. According to Equation (1), the examined MOP has three objective functions, which must be
minimized in the exploration space Ω. The goal of optimization is to calculate the feasible solution
sets for the objective functions and to return the optimal sensor layout solution in the context of
the decision strategy.

Minimize F(x) =
{
f1(x), f2(x), f3(x)

}
, for x ∈ Ω (1)
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2.2. Objective Functions

For the OSP problem, the first step is to obtain the mass and stiffness matrices of the model
through modal analysis. Then, one can extract the dynamic properties of the structure, which are easy
to achieve in a relevant finite-element model. When a large-scale structure is modeled in some FEM
program, the model typically has a high number of DOFs, and possible sensor locations can only be
selected from a subset of the total DOFs. Friswell et al. [23] proposed an improved iterated reduced
system (IIRS) technique to reduce DOFs of a model in an iterative manner. By using the mass and
stiffness matrices as input parameters, a transformation matrix can be obtained after certain loops.
The convergence of those loops has been proven in [24]. The key point here is that human OSP analysts
must manually define some possible elements as master DOFs and manually eliminate slave DOFs.
Then, the reduced mass and stiffness matrices can be employed in OSP.

2.2.1. Linear Independency of Mode Shapes

To distinguish the various modes in a modal test, the measured modal vectors of the structure
should be as linearly independent as possible. Moreover, to match the identified mode shapes with
the modes obtained through finite-element analysis, the modes of the structure must be distinguished.
The MAC matrix proposed by Carne and Dohrmann [5] can be used to evaluate the degree of correlation
between modes.

MACi, j =
ΦT

i Φ j√(
ΦT

i Φi
)(
ΦT

j Φ j

) , (2)

where Φ is the mode shape matrix, which is calculated using the reduced order model in this study.
The subscripts i and j denote the ith row and jth column of Φ, respectively, which are indicators of
the order of the selected modes.

Two of the most commonly used MAC matrix optimization methods were compared in [6]. In this
study, we used the least squares method, which minimizes the sum of the off-diagonal-element least
squares in the MAC matrix as the first objective function for evaluating the linear independence of
modal shapes, as presented in Equation (3).

f1 =
∑s

i = 1, j = 1
(i , j)

(
MACi, j

)2
, (3)

where s is the total number of selected modes for OSP. The subscripts i and j denote the ith row and jth
column of the MAC matrix, respectively.

2.2.2. Dynamic Information Redundancy

To solve the problem of data redundancy, Feng et al. [14] proposed a redundancy function by
considering the similarity of the two-node modal vectors collected by sensors and defined the two-node
similarity function according to Equation (4) by using the L2-norm operator on the matrix.

SIMi, j = 1−
‖ Φi −Φ j ‖2

‖ Φi ‖2 + ‖ Φ j ‖2
, (4)

where SIMi, j is the similarity degree between the ith and jth sensors. If the mode shape matrices
collected by two acceleration sensors have the same direction, the value of SIMi, j is 1. If the mode shape
vectors collected by two sensors have opposite directions, the value of SIMi, j is 0. Thus, the redundancy
factor can be calculated as follows:

f2 =‖ SIM− I ‖2, (5)
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where I is an identity matrix. The redundancy of the data collected under a certain sensor layout can
be determined from the f2 value. If the redundancy of the modal data collected under a certain sensor
layout is high, the value of f2 is large.

2.2.3. Vibration Response Strength

Many studies have suggested that a sensor should be placed where the vibration signal energy is
strong [7,25]. This arrangement improves the signal-to-noise ratio and provides highly accurate modal
parameter recognition results. The concept of the average MKE (AMKE) is introduced in this section.
The AMKE of each DOF is obtained by averaging the arithmetic mean of each row of the MKE matrix
and then summing up all the nodes.

AMKEi =
1
m

∑m

j=1
MKEi, j =

1
m

∑m

j=1
diag

(
ΦT

i Φ j
)
, (6)

where m denotes the total modes selected to solve the OSP. The higher AMKE is, the better signal quality
is. To transform the problem into a minimizing optimization problem, we introduce a third objective
function, namely f3, which is defined as the MKE of all nodes divided by that of the sensor-placed
nodes. The parameter f3 is expressed as follows:

f3 =

∑n
i=1 AMKEi∑s
i=1 AMKEi

, (7)

where n is the total number of possible locations for OSP and s is the total number of sensors. The numerator
is the MKE of all the nodes, which is a constant in this model, and the denominator is the MKE of
the sensor-placed nodes; thus, f3 is always greater than or equal to 1. If sensors are appropriately placed
to capture vibration signals, the denominator will be larger; hence lower f3 is better.

2.3. Multiobjective Optimization Algorithm

In the basic PSO algorithm, each particle in the swarm learns from Pbest (personal best) and
Gbest (global best). Tabu search can be incorporated into PSO to enhance its performance by
prohibiting repeated searches [26]. However, OSP is a discrete and combinatorial optimization problem
in a finite-element model. Therefore, a discrete decomposition-based multiobjective PSO (DMOPSO)
framework is proposed (Figure 2).
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2.3.1. Discrete Particle Status

To comply with the discrete representation of nodes in finite-element analysis, we redefine
the terms position and velocity used in PSO in a discrete form as follows:

• Position: In PSO, the position vector represents a solution of the optimized problem. For the
OSP problem, the position permutation of a particle i is defined as Xi = {x1, x2, · · · , xn}. Each
dimension of position is a random integer xi ∈ [1, n], where n is equal to the total number of
DOFs. The positions of all particles pertain to potential sensor nodes; all initial positions are
randomly sampled.

• Velocity: The discrete velocity of particle i is defined as Vi = {v1, v2, · · · , vn}. The parameter Vi is
binary-coded. Moreover, if vi = 1, the corresponding element xi in the position vector changes;
otherwise, xi maintains its original state. The initial velocity of the particles is 0.

The definition of the position vector is straightforward and easy to decode; thus, it tends to
minimize the computational complexity. The aforementioned velocity definition is intended to prevent
particles from flying away because setting a threshold Vmax is generally essential for inhibiting particles
from flying outside computational boundaries. However, because our velocity is binary-coded, Vmax

is no longer required. In addition, because the defined position vector is integer-coded, defining
a suitable velocity to work on the position is nontrivial. The redefined velocity reflects the differences
between two position vectors.

In DMOPSO, a velocity provides a particle with its moving direction and tendency. After updating
the velocity, one particle makes use of the new velocity to formalize a new position. Because position
and velocity are integer vectors, the mathematical updating rules in continuous PSO no longer require
discrete representation. Therefore, we redefine the rules to meet the requirements of our OSP problem.
We first redefine the velocity updating rule in discrete form as follows:

Vnew
i = B(ωVi + c1r1(Pbesti ⊕Xi) + c2r2(Gbesti ⊕Xi)), (8)

where ω is the inertia weight; c1 and c2 are the cognitive and social components, respectively; r1 and
r2 are two random numbers in the range of 0–1; and ⊕ is the XOR operator. The binary function B is
defined as follows:

B(xi) =

{
1, if rand(0, 1) < sigmoid(xi)

0, if rand(0, 1) ≥ sigmoid(xi)
, (9)

where the sigmoid function is defined as follows:

sigmoid(x) =
1

1 + e−x (10)

To promote exploration and exploitation, the inertia weight ω is randomly generated between
0 and 1. Moreover, the cognitive and social components c1 and c2 are set to the typical value of
1.494, as suggested by [22]. Finally, given a position vector X and velocity vector V, we can update
the positions according to the newly defined discrete velocity updating rule as follows:

xnew
i =

{
xi, if vi = 0

rand(Ω1), if vi = 1
, (11)

where Ω1 represents the position set that has not been visited; that is, the position set that has not been
listed in the tabu list.

2.3.2. DMOPSO

Stochastic approaches for solving MOPs usually suffer from high computational complexity.
The Penalty Boundary Intersection approach proposed by Zhang and Li [13] decomposes an MOP into



Appl. Sci. 2020, 10, 7710 7 of 17

numerous subproblems and optimizes each subproblem according to its neighboring subproblems.
This utilizes a weighted vector w and penalty value θ for minimizing the distance to the ideal objective
vector d1 and direction error to the weighted vector d2 from the objective function vector F(x). Therefore,
the optimization problem can be expressed using Equation (12), in which d1 and d2 are determined
using Equation (13).

Minimize gpbi(x|w, z) = d1(F(x)
∣∣∣w, z) + θd2(F(x)

∣∣∣w, z) (12)

d1( f
∣∣∣w, z) =

‖ ( f − z)Tw ‖
‖ w ‖

d2( f
∣∣∣w, z) =‖ f −

(
z +

d1

‖ w ‖
w
)
‖ ,

(13)

where z is the ideal point with minimum value in each objective and T is the neighborhood size.
The procedure for OSP in SHM when using the proposed DMOPSO algorithm comprises two

major blocks. The initialization block involves the following steps:

1. Generate a well-distributed weighted vector (W =
{
w1, · · · , wN

}T
).

2. Initialize neighborhood N according to the Euclidean distance (i.e., N =
{
n1, · · · , nN

}T
,

ni = [n1, · · · , nT]).
3. Set the initial reference point zid.

4. The personal best position initialization Pbest =
{
pbest1, · · · , pbestN

}T
, pbesti = xi.

5. Set t = 0.

The loop block involves the following steps when t < MaxIter:

1. Randomly select one particle from the neighbors as the Gbest particle.

2. Calculate the new position xt+1
i .

3. Compute the objective function vector F.
4. Update the neighborhood solutions. For the jth particle in the neighborhood of the ith particle,

xt
i = xt+1

i if gpbi
(
xt+1

i

∣∣∣w j, z
)
≤ gpbi

(
xt

i

∣∣∣w j, z
)
.

5. Update reference point z.
6. Update the personal best solution Pbest.
7. Set t = t + 1.

2.4. Decision on the Pareto Frontier

After we obtain the Pareto set of the OSP problem, the next step is to determine which solution
from the Pareto set can be the final placement. Because no physical relationship exists among the three
objective functions, we define a normalization rule to map them to the range between 0 and 1.
The membership function µ is computed as follows:

µ
(

fi, j
)
= exp

−
 fi, j − f j

1
k
∑k

i=1

∣∣∣∣ fi, j − f j

∣∣∣∣


2, (14)

where the subscript i represents the ith solution corresponding to the Pareto set and the subscript j
represents the jth objective corresponding to the Pareto set. Thus, fi, j indicates the value of the ith
Pareto solution for the jth objective, and f j indicates the minimum value of the jth objective function
among k solutions.

To combine the µ of each objection function, a weighted square sum rule is used. The ith closeness
distance CDi, which is defined using Equation (15), is an overall performance measure of OSP. Due to
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the lack of a-priori information regarding the weights of the objective functions, equal weights are
assumed to achieve the most balanced solution for each objective. The weightings can be tuned if some
practical reasons bias the preference of objective functions. For example, defining the whole weight for
f1 reduces to the traditional MAC approach. Or if the structure is subject to noisy environment, a greater
weight on f3 is preferred. In this DMOPSO algorithm used in this study, only CDi is recomputed
without influencing the obtained Pareto set.

CDi =

√∑q

j=1
w jµ2

i j, (15)

where q is the number of objectives (3 in this study). Equation (15) indicates that the solution with
the highest CD is selected as the final output OSP result.

3. Validation

3.1. Model Setup

We validated the proposed OSP objective functions by using the DMOPSO algorithm on the Canton
Tower, which has a height of 610 m. This building was previously studied by Yi et al. [27,28] and
Sun et al. [6]. The method proposed in this paper was compared with the Immune Monkey Algorithm
presented in [26] and the discrete Artificial Bee Colony algorithm presented in [6]. Canton Tower
comprises two parts, namely a 454-m-high main tower and 156-m-high steel antenna mast. The main
tower is a tube-in-tube structure consisting of a steel lattice outer structure and reinforced concrete
inner structure. Detailed descriptions and photos of this structure can be found in [28]. The present
study extended a preliminary study on FEM analysis and a simplified 3D beam model with lumped
mass that was proposed by Ni et al. [29]. The simplified model consisted of 37 beam elements, with 27
elements for the main tower and 10 elements for the antenna mast. Each beam node had five DOFs
(two horizontal translations and three rotations) when neglecting the vertical deformation. Therefore,
the beam model comprised 185 DOFs. As in previous studies, we only considered the horizontal
translation DOFs for OSP. We applied the IIRS technique to the open-access data provided by Ni [29] to
reduce the 3D beam model. Consequently, a reduced model that only considers horizontal translation
DOFs was obtained. The obtained reduced model had 74 DOFs, which were considered as candidate
sensor locations. This part of the present study is the same as the work presented in [6,27,28] for a fair
comparison of the same model. We used the same settings (e.g., the number of sensors) for the OSP
framework and proposed MODM strategy.

Given the stiffness and mass matrices of the aforementioned finite-element model of Canton
Tower, the mode shape matrix Φ was computed. The optimization algorithm was then implemented
in MATLAB, and the order of modes m (=15) as well as the number of sensors s (=20) were fed into
the algorithm, whose parameters were configured as follows:

PSO: Particle swarm population size N = 210 and maximum iteration cycle MaxIter = 1000.
DMOPSO: Neighborhood size T = 21; number of subobjectives = 210 (equal to the population

size); number of solution sets on the Pareto front = 100; and decomposition penalty value θ = 5.

3.2. Results

Table 1 presents the 33 solution sets obtained from independent OSP runs with 20 sensors.
The objective function value and the membership value of the final optimal solution obtained in each
run were notably close. An observation of the membership value indicates that the best solution
obtained is the solution with the highest ranking in the corresponding solution set for f1 and f3.
Moreover, the solution obtained for f2 is notably poor in the solution set. Thus, among the three set
targets, all the solutions that stand out through the set conditions conform to a loose rule, that is,
the nondiagonal elements of the measured signal MAC matrix are minimized to maintain the linear
vibration of the mode shape. The signal strength of the vibration response can provide a relatively
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accurate solution; however, the redundancy in the acquisition signal is poor. Thus, the three indicators
are completely independent and have no influence on each other. This finding proves that no abnormal
solution exists in the multiobjective optimization and decision-making results, which indicates that
the optimization program is correct and the decision-making process is robust.

Table 1. Results of 33 independent runs with the proposed method and the membership function
values in the Pareto set for each run. The values higher than the average value of the corresponding
objective function are highlighted in bold; and the superior results for the three objectives presented
against a gray background.

Set No.
Objective Function Membership Function

f 1 f 2 f 3 µ1 µ2 µ3 CD

1 4.2023 6.4217 1.9346 0.9855 0.0039 0.9974 1.4022
2 3.2291 6.9469 2.0654 0.9959 0.0001 0.9749 1.3937
3 3.2291 6.9469 2.0654 0.9959 0.0001 0.9749 1.3937
4 3.2291 6.9469 2.0654 0.9959 0.0001 0.9749 1.3937
5 3.2932 7.0005 1.9632 0.9964 0.0003 0.9943 1.4077
6 2.9205 6.9322 2.1283 0.9991 0.0013 0.9644 1.3886
7 3.7596 7.0590 2.0437 0.9921 0.0010 0.9854 1.3983
8 3.2291 6.9469 2.0654 0.9959 0.0001 0.9749 1.3937
9 3.2932 7.0005 1.9632 0.9964 0.0003 0.9943 1.4077

10 3.3699 8.1701 1.9502 0.9959 0.0000 0.9987 1.4104
11 3.8235 7.0973 1.9064 0.9911 0.0005 0.9972 1.4060
12 3.2932 7.0005 1.9632 0.9964 0.0003 0.9943 1.4077
13 3.3699 8.1701 1.9502 0.9959 0.0000 0.9987 1.4104
14 3.7296 6.7387 1.9861 0.9917 0.0076 0.9984 1.4073
15 3.5830 6.7788 1.9682 0.9927 0.0008 0.9957 1.4060
16 3.3699 8.1701 1.9502 0.9959 0.0000 0.9987 1.4104
17 2.8888 7.2074 2.1425 0.9991 0.0000 0.9692 1.3920
18 3.2932 7.0005 1.9632 0.9964 0.0003 0.9943 1.4077
19 3.7296 6.7387 1.9861 0.9917 0.0076 0.9984 1.4073
20 3.8045 6.8785 1.9493 0.9899 0.0006 0.9997 1.4069
21 3.4290 7.5629 1.9786 0.9954 0.0000 0.9935 1.4063
22 3.1451 7.2698 2.0283 0.9978 0.0006 0.9874 1.4038
23 3.8045 6.8785 1.9493 0.9899 0.0006 0.9997 1.4069
24 3.5403 7.7830 1.8722 0.9949 0.0000 0.9984 1.4093
25 3.7296 6.7387 1.9861 0.9917 0.0076 0.9984 1.4073
26 3.1596 7.8314 1.8752 0.9973 0.0002 0.9957 1.4093
27 3.3179 7.3410 2.0130 0.9971 0.0002 0.9938 1.4078
28 3.1799 6.7150 1.9181 0.9934 0.0010 0.9988 1.4087
29 3.1451 7.2698 2.0283 0.9978 0.0006 0.9874 1.4038
30 3.3699 8.1701 1.9502 0.9959 0.0000 0.9987 1.4104
31 3.8045 6.8785 1.9493 0.9899 0.0006 0.9997 1.4069
32 3.5207 7.1577 1.9210 0.9926 0.0003 1.0000 1.4090
33 3.0762 7.0062 2.0031 0.9987 0.0011 0.9883 1.4051

Mean 3.4196 7.1525 1.9843 0.9946 0.0011 0.9915 1.4044

Table 1 presents the dominant solution sets within the complete set of solution sets. The values
higher than the average value of the corresponding objective function are highlighted in bold.
Moreover, superior results for the three objectives are presented against a gray background. Regarding
the averages of the 33 solution sets, the bold numbers were less than the average of the target Pareto
solution set (Set Nos. 5, 9, 12, and 18). The results of Set No. 28 were smaller than the average
value for all the objectives. Moreover, the results of Set No. 5 were larger than those of Set No.
28 for all the objectives, which indicated that Set No. 5 was dominated by Set No. 28. Figure 3
presents the visualizations of Pareto Set No. 28 from different dimensions. Because Solution No. 28
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outperformed the other solutions, we compared Solution No. 28 with the solutions of other OSP
methods from the literature.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 17 
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3.3. Discussion

Table 2 presents the OSP results obtained for the Canton Tower when using different approaches.
The results from referenced papers are referred to with square brackets, followed by denotation to
separate variants. References [27] and Reference [6] (o.1) used the same optimization objective to
minimize the maximum off-diagonal element. The difference between the aforementioned references is
related to the algorithm used for optimization. References [6] (o.1) and [6] (o.2) used the same algorithm
for optimization, but Reference [6] (o.2) minimized the sum of the least squares of the off-diagonal
elements; thus, Reference [6] (o.2) used the first objective function in this study.

Table 2. Optimal sensor placement (OSP) node ID of the Canton Tower when using 20 sensors with
different methods.

Direction MOP-No. 28 Reference [27] Reference [6]
(o.1)

Reference [6]
(o.2)

x 5, 6, 10, 14, 16,
17, 22, 25, 26, 27

2, 6, 14, 20, 21,
22, 23, 24, 29

2, 3, 17, 18, 19,
20, 21, 22, 23

1, 2, 3, 4, 5, 14,
18, 19, 20, 21, 26

y 3, 4, 9, 11, 16,
20, 22, 25, 26, 27

1, 2, 4, 5, 6, 7,
11, 16, 20, 22, 23

1, 2, 3, 10, 17, 19,
20, 21, 22, 24, 28

3, 4, 5, 8, 17,
19, 20, 23, 27



Appl. Sci. 2020, 10, 7710 11 of 17

We added the different OSP solutions into the proposed objective function to compare values.
Table 3 indicates that the method of minimizing the maximum off-diagonal elements has no obvious
advantages over the method used in [6] (o.2) and the MOP. The results of the aforementioned solutions
exhibit poor performance for f2; thus, the results have no comparative significance. The results of
the single-objective optimization method used in [6] (o.2) are superior to those of the MOP method for
f1. By contrast, for f3, the solution of the MOP method is superior to that of the single-objective method.

Table 3. Comparison of the solutions obtained with different methods when using the proposed
objective function and closeness.

Method f 1 f 2 f 3 µ1 µ2 µ3 CD

MOP-No. 28 3.1799 6.7150 1.9181 0.9934 0.0001 0.9624 1.4087
Reference [27] 6.8546 6.1141 3.1888 - - - -

Reference [6] (o.1) 4.7892 7.6955 2.7343 - - - -
Reference [6] (o.2) 2.1766 6.0536 1.9181 1.0000 0.0247 0.6191 1.1764

We subsequently calculated the two solution groups for Pareto Set No. 28 simultaneously with
the proposed MODM method. We used MODM analysis to compare the performance levels of
the MOP method and the method used in [6] (o.2). The membership functions and closeness distance
of [6] (o.2) indicated that its solution was inferior to that of the MOP method. For the first objective,
the single-objective algorithm exhibited the best performance, which is in line with the expectation. Thus,
the multiobjective optimization algorithm still has room for progress in single-objective convergence.
The membership values in Table 3 indicate that the multiobjective optimization solution in the first
and third objectives were notably close to the results of the ideal solution in the solution set. Moreover,
the method used in [6] (o.2) provided the best results for the first objective; however, this method only
provided average results for the third objective. Thus, the MOP method outperformed the method
in [6] (o.2) for the third objective. The results also indicated that the aforementioned two optimization
methods were not effective for the second objective.

4. Application

4.1. Model Setup

To further test the effectiveness of OSP in SHM for complex structures, we conducted an experiment
on a three-story aluminum frame structure, illustrated in Figure 4a with a 50 cm ruler for scale,
as an attempt to mimic offshore jacket structures. The structure was composed of four square frames
and four slanted legs. The sides of the square structure had dimensions of 0.5, 0.45, 0.4, and 0.35 m
from bottom to top. The spacing of each layer from bottom to top was 0.5 m; thus, the height of
the structure was 1.5 m. The material used was aluminum, and all joints were connected with bolts.
The frame was constructed with an angle section profile (25 × 25 × 2 mm3). The bottom layer was fixed
on an optical table to prevent horizontal motion and vibration. The mechanical properties of aluminum
are as follows: Young’s modulus = 68.9 GPa, Poisson’s ratio = 0.33, and density = 2850 kg/m3.

A corresponding finite-element model was developed for OSP, as illustrated in Figure 4b,c.
The model had 232 nodes, 244 beam elements, and 1176 DOFs. The same angle section profile was
applied on all elements. Modal analysis was performed with fixed constraints at the four bottom
corners. Because the structure was vertically symmetrical, its natural frequencies were expected to be
the same in horizontal directions. At the beginning of modal analysis, by using the IIRS technique,
only 70 translational DOFs (along the x-direction and y-direction) were considered for OSP. The results
of modal analysis were fed to an optimization process, which output the eight most effective locations
for sensors. MOP optimization was conducted for the same configuration as that of Canton Tower to
determine the optimal locations for sensors. In addition, we used the traditional forward sequential
sensor placement (FSSP) algorithm [7] to discover different optimization solutions. The FSSP algorithm
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minimizes the sum of the least squares of the off-diagonal elements of a MAC matrix (i.e., the objective
is MinMAC). The third method involved random placement by excluding the nodes selected by
the FSSP algorithm.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17 
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A vibration test was then performed on the physical model. The structure was instrumented with
eight single-axis accelerometers. The OSP locations were obtained using the MOP, FSSP, and random
placement methods. Four sensors were oriented in the x-direction, and the other four were oriented
in the y-direction. A random impulse signal was applied at the upper corner of the frame (Node 29)
on the structure along the y-direction. The sample rate of data acquisition was 25,600 Hz, and data
were recorded for 10 s. The modal properties of the structure were identified using frequency domain
decomposition on the basis of all the nodal measurements. Then, vibration signals were processed
to obtain the power spectral density (PSD) matrix. The vibration signals were also compared with
modal frequencies from FEM analysis. Moreover, the relative displacements between sensors were
computed at the first six modal frequencies to obtain a mode shape matrix for calculating objective
functions. Because we did not measure all the nodes for potential sensor locations, f3 could not be
calculated. We slightly modified Equation (7) by setting the AMKE obtained from the MOP method as
the reference value, which was divided by the AMKE obtained from other methods, as per Equation
(16). If the value obtained after the aforementioned division was greater than 1, the results of this
sensor placement method were worse than those of the MOP method for f3.

f3 =

∑s
i=1 AMKEi

MOP∑s
i=1 AMKEi

, (16)
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4.2. Result and Discussion

The modal analysis of the finite-element model provided the modal frequencies and corresponding
mode shapes. The first 10 modes are listed in Table 4, and the first six mode shapes are illustrated
in Figure 5. Due to the symmetry of the model, mode frequencies (1, 2), (4, 5), and (8, 9) were exactly
paired, and the mode shapes were the same in horizontal directions. The modal frequencies predicted
by FEM are systematically higher than those obtained from the experiment. A possible reason is due
to the presence of the bolt joints for the physical model, which is absent for the finite-element model.
The presence of bolt joints added additional weight to the structure and also reduced flexural stiffnesses
of the structural members, both potentially resulting in lower modal frequencies of the entire structure.

Table 4. Modal frequencies in Hz.

Mode FEM EXP (MOP) Error

1 20.957 18 −14%
2 20.957 18 −14%
3 27.896 22 −21%
4 64.043 54 −16%
5 64.043 55 −14%
6 88.013 70 −20%
7 105.76 96 −9%
8 113.89 103 −10%
9 113.89 104 −9%
10 134.46 119 −11%Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 17 
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Subsequently, the FEM results were input into OSP algorithms, which output the eight best
locations, as listed in Table 5. The sensor positions obtained using three methods are illustrated
in Figure 6, where Node 29 is the excitation node, green arrows represent x-direction sensors,
and magenta arrows represent y-direction sensors. Node 25 in the MOP method was collocated by
two sensors, which were not limited by the MOP algorithm. These sensors were placed on the selected
nodes of the physical model according to Table 5, and we performed vibration tests for each selection.

Table 5. Sensor placement and performance evaluation for the three OSP methods.

Method X-Direction Y-Direction f 1 f 2 f 3

MOP 5, 16, 25, 31 6, 15, 25, 34 0.2633 1.8006 1
FSSP 7, 12, 26, 28 4, 6, 18, 22 0.1475 1.9335 2.2136

Random 11, 19, 23, 31 5, 9, 17, 21 0.4197 2.7686 0.9078
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Figure 7 illustrates the acceleration PSDs of each sensor when using the MOP method. This figure
spans a frequency range from 0 to 130 Hz, which covers the first 10 modes of the frame structure.
Note that the PSD of No. 8 sensor at Node 34 shows the greatest amplitude and cleanest signals among
the eight deployed sensors. The primary reason is attributed to the nature of the operational modal
analysis method in the present study when performing singular value decomposition for identifying
the PSDs. Either the sensor location near the free ends or close to excitation node may also affect
the signal amplitudes, but is of secondary importance. Nevertheless, only peak frequencies without
the need of signal amplitude of the PSDs are of interest for determining the modal frequencies. The peak
frequencies are obtained (See examples indicated by the pink-dashed vertical lines in the PSDs of
No. 2 and 6 sensors) and listed in Table 4, and compared with the values predicted using the FEM.
The symmetry of modes was also resolved; however, the frequencies were on average 14% lower
than those obtained through the FEM. The signals from different sensors did not indicate significant
differences in modal frequencies. In terms of the characteristics of frequency response, the modes
along the x-direction and the torsional modes were well excited. Distinctive peaks were observed,
which proved that rich structural information was included in the measurements at the OSP locations.
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The signals were further processed to evaluate the mode shape matrices of sensing DOFs through
singular value decomposition. Three objective functions were computed with their corresponding
matrices (Table 5). The best result for f1 was obtained with the FSSP method because MinMAC was
the only objective in FSSP. For the other two objectives, the MOP method outperformed the FSSP
method. Surprisingly, the random placement method achieved optimal performance for f3; however,
for f1 and f2, its performance levels were notably inferior to those of the other two methods. Because
f1 and f3 had a negative correlation, the MOP method provided the most balanced performance for
opposing objectives because equal weight was assumed for each objective.

5. Conclusions

We developed a decomposition-based multiobjective PSO algorithm with a redefined integer
reproduction operator for denoting possible sensor locations in a structure. Three objective functions
were defined, linear independence of mode shapes, limited dynamic information redundancy,
and maximum vibration response signal strength, for evaluating the performance of sensor placements.
Once a Pareto solution set is obtained, a closeness-based MODM strategy was applied to determine
the final solution.

Numerical examples were investigated to test the applicability of the proposed MOP framework for
OSP. The Canton Tower case was compared with those obtained from two previous studies. The results
proved that the proposed method can obtain the optimal values for MAC and MKE metrics; however,
it exhibited poor performance in the similarity degree objective. We then tested a more complex
frame structure experimentally. Again, the results proved the effectiveness of the proposed algorithm.
The test data verified that the experimental and numerical conclusions were consistent. In this case,
the MOP approach under the setup of equal-weighting on each objective may not reach the optimal
solution in a certain single objective; however, it can discover a notably feasible and balanced solution
among contradicting functions. We look forward to SHM applications of various structures and
damage detection based on efficient sensor layout obtained with the proposed OSP algorithm.
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Nomenclature

Symbol Description
Φ Mode shape matrix
Ω Exploration space
µ Membership function
ω Inertia weight of particles
θ Decomposition penalty
N Population size
T Neighborhood size
f Objective function
m Order of modes
n Number of DOFs
s Number of sensors
t Number of iterations
v Discrete velocity of particles
w Weighting of objective function
x Node number
CD Closeness distance
MAC Modal assurance criterion matrix, corresponding to f1
MKE Modal kinetic energy matrix, corresponding to f3
SIM Similarity matrix, corresponding to f2

References

1. Kammer, D.C. Sensor placement for on-orbit modal identification and correlation of large space structures.
J. Guid. Control Dyn. 1991, 14, 251–259. [CrossRef]

2. Heo, G.; Wang, M.; Satpathi, D. Optimal transducer placement for health monitoring of long span bridge.
Soil Dyn. Earthq. Eng. 1997, 16, 495–502. [CrossRef]

3. Papadimitriou, C. Optimal sensor placement methodology for parametric identification of structural systems.
J. Sound Vib. 2004, 278, 923–947. [CrossRef]

4. Ewins, D.J.; Saunders, H. Modal Testing: Theory and Practice. J. Vib. Acoust. 1986, 108, 109–110. [CrossRef]
5. Carne, T.G.; Dohrmann, C.R. A Modal Test Design Strategy for Model Correlation; Sandia National Labs:

Albuquerque, NM, USA, 1994.
6. Sun, H.; Büyüköztürk, O. Optimal sensor placement in structural health monitoring using discrete

optimization. Smart Mater. Struct. 2015, 24, 125034. [CrossRef]
7. Ostachowicz, W.; Soman, R.; Malinowski, P. Optimization of sensor placement for structural health monitoring:

A review. Struct. Health Monit. 2019, 18, 963–988. [CrossRef]
8. Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based

Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput.
2013, 18, 577–601. [CrossRef]

9. Yang, S.; Li, M.; Liu, X.; Zheng, J. A Grid-Based Evolutionary Algorithm for Many-Objective Optimization.
IEEE Trans. Evol. Comput. 2013, 17, 721–736. [CrossRef]

10. Wang, R.; Purshouse, R.C.; Fleming, P.J. Preference-inspired coevolutionary algorithms for many-objective
optimization. IEEE Trans. Evol. Comput. 2013, 17, 474–494. [CrossRef]

11. Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A Reference Vector Guided Evolutionary Algorithm for
Many-Objective Optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [CrossRef]

http://dx.doi.org/10.2514/3.20635
http://dx.doi.org/10.1016/S0267-7261(97)00010-9
http://dx.doi.org/10.1016/j.jsv.2003.10.063
http://dx.doi.org/10.1115/1.3269294
http://dx.doi.org/10.1088/0964-1726/24/12/125034
http://dx.doi.org/10.1177/1475921719825601
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/TEVC.2012.2227145
http://dx.doi.org/10.1109/TEVC.2012.2204264
http://dx.doi.org/10.1109/TEVC.2016.2519378


Appl. Sci. 2020, 10, 7710 17 of 17

12. Bader, J.; Zitzler, E. HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization.
Evol. Comput. 2011, 19, 45–76. [CrossRef] [PubMed]

13. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans.
Evol. Comput. 2007, 11, 712–731. [CrossRef]

14. Feng, S.; Jia, J. Acceleration sensor placement technique for vibration test in structural health monitoring
using microhabitat frog-leaping algorithm. Struct. Health Monit. 2017, 17, 169–184. [CrossRef]

15. Guo, Y.; Ni, Y.; Chen, S. Optimal sensor placement for damage detection of bridges subject to ship collision.
Struct. Control Health Monit. 2016, 24, e1963. [CrossRef]

16. Lin, J.-F.; Xu, Y.; Law, S.-S. Structural damage detection-oriented multi-type sensor placement with
multi-objective optimization. J. Sound Vib. 2018, 422, 568–589. [CrossRef]

17. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of
the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and
Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108.

18. Coello, C.; Pulido, G.; Lechuga, M. Handling multiple objectives with particle swarm optimization. IEEE Trans.
Evol. Comput. 2004, 8, 256–279. [CrossRef]

19. Nebro, A.; Durillo, J.; Garcia-Nieto, J.; Coello, C.C.; Luna, F.; Alba, E. SMPSO: A new PSO-based metaheuristic
for multi-objective optimization. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence
in Multi-Criteria Decision-Making, Nashville, TN, USA, 30 March–2 April 2009; pp. 66–73.

20. Al Moubayed, N.; Petrovski, A.; McCall, J. D2MOPSO: MOPSO Based on Decomposition and Dominance with
Archiving Using Crowding Distance in Objective and Solution Spaces. Evol. Comput. 2014, 22, 47–77. [CrossRef]

21. Lin, Q.; Li, J.; Du, Z.; Chen, J.; Ming, Z. A novel multi-objective particle swarm optimization with multiple
search strategies. Eur. J. Oper. Res. 2015, 247, 732–744. [CrossRef]

22. Gong, M.; Cai, Q.; Chen, X.; Ma, L. Complex Network Clustering by Multiobjective Discrete Particle Swarm
Optimization Based on Decomposition. IEEE Trans. Evol. Comput. 2013, 18, 82–97. [CrossRef]

23. Friswell, M.; Garvey, S.; Penny, J. Model reduction using dynamic and iterated IRS techniques. J. Sound Vib.
1995, 186, 311–323. [CrossRef]

24. Friswell, M.; Garvey, S.; Penny, J. The convergence of the iterated IRS method. J. Sound Vib. 1998, 211,
123–132. [CrossRef]

25. Li, D.-S.; Li, H.; Fritzen, C. The connection between effective independence and modal kinetic energy methods
for sensor placement. J. Sound Vib. 2007, 305, 945–955. [CrossRef]

26. Behera, S.; Sahoo, S.; Pati, B. A review on optimization algorithms and application to wind energy integration
to grid. Renew. Sustain. Energy Rev. 2015, 48, 214–227. [CrossRef]

27. Yi, T.-H.; Li, H.-N.; Zhang, X.-D. Health monitoring sensor placement optimization for Canton Tower using
immune monkey algorithm. Struct. Control Health Monit. 2014, 22, 123–138. [CrossRef]

28. Yi, T.-H.; Li, H.-N.; Zhang, X.-D. Sensor placement on Canton Tower for health monitoring using
asynchronous-climb monkey algorithm. Smart Mater. Struct. 2012, 21. [CrossRef]

29. Ni, Y.; Xia, Y.; Lin, W.; Chen, W.; Ko, J. SHM benchmark for high-rise structures: A reduced-order finite
element model and field measurement data. Smart Struct. Syst. 2012, 10, 411–426. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1162/EVCO_a_00009
http://www.ncbi.nlm.nih.gov/pubmed/20649424
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1177/1475921716688372
http://dx.doi.org/10.1002/stc.1963
http://dx.doi.org/10.1016/j.jsv.2018.01.047
http://dx.doi.org/10.1109/TEVC.2004.826067
http://dx.doi.org/10.1162/EVCO_a_00104
http://dx.doi.org/10.1016/j.ejor.2015.06.071
http://dx.doi.org/10.1109/TEVC.2013.2260862
http://dx.doi.org/10.1006/jsvi.1995.0451
http://dx.doi.org/10.1006/jsvi.1997.1368
http://dx.doi.org/10.1016/j.jsv.2007.05.004
http://dx.doi.org/10.1016/j.rser.2015.03.066
http://dx.doi.org/10.1002/stc.1664
http://dx.doi.org/10.1088/0964-1726/21/12/125023
http://dx.doi.org/10.12989/sss.2012.10.4_5.411
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Optimization Procedure 
	Objective Functions 
	Linear Independency of Mode Shapes 
	Dynamic Information Redundancy 
	Vibration Response Strength 

	Multiobjective Optimization Algorithm 
	Discrete Particle Status 
	DMOPSO 

	Decision on the Pareto Frontier 

	Validation 
	Model Setup 
	Results 
	Discussion 

	Application 
	Model Setup 
	Result and Discussion 

	Conclusions 
	References

